Monte Carlo Methods MAP001169
|
Course description:
This course covers fundamentals of the theory of stochastic processes.
Classes will be provided in two forms: lectures, discussion sessions, where the assignments will be discussed.
Textbooks:
Instructors:
Week # | Day | Time and Location | Lecture/Discussion # | Material | Handouts/Reading material |
---|---|---|---|---|---|
40 | Tuesday, 03/10/2017 | 15:15-16:55 4.04 C-11 | Lab 1 (KB): Simulation | Assignment 1 - Basic methods of simulation from random distributions | Assignment 1 - Basic methods of simulation from random distributions , Tablica 1 , Tablica 2 , Tablica 3 , Tablica 4 |
Wednesday, 04/10/2017 | 13:15-15:00 P.01 C-11 | Lecture 1 (KP): Simulating from random models | Effective random simulation | ||
41 | Tuesday, 10/10/2017 | 15:15-16:55 4.04 C-11 | Lab 2 (KB): | Assignment 2 | Assignment 2 , Tablica 5 , Tablica 6 , Tablica 7 , Tablica 8 Tablica 9 , Tablica 10 |
Wednesday, 11/10/2017 | 13:15-15:00 P.01 C-11 | Lecture 2 (KP): Rejection algorithm and conditional methods | Rejection algorithm and conditional methods | ||
42 | Tuesday, 17/10/2017 | 15:15-16:55 4.04 C-11 | Lab 3 (KB): | Assignment 3 | Assignment 3 , |
Wednesday, 18/10/2017 | 13:15-15:00 P.01 C-11 | Lecture 3 (KP): Monte Carlo integration | MC-Integration | ||
43 | Tuesday, 24/10/2017 | 15:15-16:55 4.04 C-11 | Lab 4 (KB): | ||
Wednesday, 25/10/2017 | 13:15-15:00 P.01 C-11 | Lecture 4 (KP): Importance sampling | Reduction of variance | ||
44 | Monday 30/10/2017 | 13:15-15:00 P.01 C-11 | Lecture 5 (KP): Monte Carlo Markov Chain -- Introduction | MCMC | |
Tuesday, 31/10/2017 | 15:15-16:55 | Rector's Hours | |||
45 | Tuesday, 07/11/2017 | 15:15-16:55 4.04 C-11 | Lab 6 (KB): | ||
Wednesday, 08/11/2017 | 13:15-15:00 P.01 C-11 | Lecture 6 (KP): Metropolis-Hastings algorithm and Gibbs sampler | Metropolis-Hastings algorithm, Gibbs sampler | ||
46 | Tuesday, 14/11/2017 | 15:15-16:55 4.04 C-11 | Lab 7 (KB): | ||
Wednesday, 15/11/2017 | 13:15-15:00 P.01 C-11 | Lecture 7 (KP): Independence and random walk proposals | |||
47 | Tuesday, 21/11/2017 | 15:15-16:55 4.04 C-11 | Lab 8 (KB): | ||
Wednesday, 22/11/2017 | 13:15-15:00 P.01 C-11 | Lecture 8 (KP): Review of Monte Carlo integration | Complete notes for the first part of the course | ||
48 | Tuesday, 28/11/2017 | 15:15-16:55 4.04 C-11 | Lab 9 (KB): | ||
Wednesday, 29/11/2017 | 13:15-15:00 P.01 C-11 | Test I (KP): Labs 1-8 | |||
49 | Tuesday, 05/12/2017 | 15:15-16:55 4.04 C-11 | Group A (KB) Lab : | ||
Wednesday, 06/12/2017 | 13:15-15:00 P.01 C-11 | Lecture 9 (KP): Statistical inference | Fundamentals of statistical inference | ||
50 | Tuesday, 12/12/2017 | 15:15-16:55 4.04 C-11 | Lab (KB): | , | |
Wednesday, 13/12/2017 | 13:15-15:00 P.01 C-11 | Lecture 10 (KP): Bootstrap method | Bootstrap method | ||
51 | Tuesday, 19/12/2017 | 15:15-16:55 4.04 C-11 | Group A (KB) Lab : | ||
Wednesday, 20/12/2017 | 13:15-15:00 P.01 C-11 | Lecture 11 (KB): Bayesian inference | |||
2 | Tuesday, 09/01/2017 | 15:15-16:55 4.04 C-11 | Lab (KB): | , | |
Wednesday, 10/01/2017 | 13:15-15:00 P.01 C-11 | Lecture 12 (KB): Bayesian computation | |||
3 | Tuesday, 16/01/2017 | 15:15-16:55 4.04 C-11 | Group A (KB) Lab : | ||
Wednesday, 17/01/2017 | 13:15-15:00 P.01 C-11 | Lecture 13 (KB): Review of Monte Carlo methods for statistical inference | |||
4 | Tuesday, 23/01/2017 | 15:15-16:55 4.04 C-11 | Lab (KB): | ||
Wednesday, 24/01/2017 | 13:15-15:00 P.01 C-11 | Test II (KB): Labs 6-14 |
Grading: The work throughout the discussion session will be compounded into the final grade as follows:
Percentage | Grade |
---|---|
49 - 0 | F (2.0) |
59 - 50 | C (3.0) |
69 - 60 | C+ (3.5) |
79 - 70 | B (4.0) |
89 - 80 | B+ (4.5) |
100 - 90 | A (5.0) |