
Monte Carlo Methods

Lecture notes for MAP001169

Based on Script by Martin Sköld

adopted by Krzysztof Podgórski

2

Contents

3

4 CONTENTS

Part I

Simulation and Monte-Carlo
Integration

5

Chapter 1

Simulation and Monte-Carlo
integration

1.1 Issues in simulation

1.2 Raw ingredients

7

8 CHAPTER 1. SIMULATION AND MONTE-CARLO INTEGRATION

Chapter 2

Simulating from specified
distributions

2.1 Transforming uniforms

2.2 Transformation methods

2.3 Rejection sampling

2.4 Conditional methods

9

10 CHAPTER 2. SIMULATING FROM SPECIFIED DISTRIBUTIONS

Chapter 3

Monte-Carlo integration

3.1 Generic Monte Carlo integration

3.2 Bias and the Delta method

3.3 Variance reduction by rejection sampling

3.4 Variance reduction by importance sampling

3.4.1 Unknown constant of proportionality

11

12 CHAPTER 3. MONTE-CARLO INTEGRATION

Chapter 4

Markov Chain Monte-Carlo

4.1 Markov chains - basic concepts

4.2 Markov chains with continuous state-space

4.3 Markov chain Monte-Carlo integration

We now turn to the actual construction of the Markov chains.

4.4 Two simple continuous time Markov chain mod-
els

4.5 The Metropolis-Hastings algorithm

How do you choose transition density q̃ in order to satisfy (??)? The idea
behind the Metropolis-Hastings algorithm is to start with an (almost) arbi-
trary transition density q. This density will not give the correct asymptotic
distribution f , but we could try to repair this by rejecting some of the moves
it proposes. Thus, we construct a new transition density q̃ defined by

q̃(x, y) = α(x, y)q(x, y) + (1− α(x, y))δx(y), (4.1)

where δx(y) is a point-mass at x. This implies that we stay at the level x if
the proposed value is rejected and we reject a proposal y∗ with probability
1− α(x, y∗). Simulating from the density y 7→ q̃(x, y) works as follows

1. Draw y∗ from q(x, ·).

2. Draw u from U(0, 1).

3. If u < α(x, y∗) set y = y∗,
else set y = x.

13

14 CHAPTER 4. MARKOV CHAIN MONTE-CARLO

We now have to match our proposal density q with a suitable acceptance
probability α. The choice of the Metropolis-Hastings algorithm, based on
satisfying the global balance equation (??), is

α(x, y) = min(1,
f(y)q(y, x)

f(x)q(x, y)
), (4.2)

you might want to check that this actually satisfies (??).

Algorithm 4.1 (The Metropolis-Hastings algorithm).

1. Choose a starting value x(0).

2. Repeat for i = 1, . . . , N :

i.1 Draw y∗ from q(x(i−1), ·).
i.2 Draw u from U(0, 1).

i.3 If u < α(x(i−1), y∗) set x(i) = y∗, else set x(i) = x(i−1).

3. x(1), x(2), . . . , x(N) is now a sequence of dependent draws, approx-
imately from f .

There are three general types of Metropolis-Hastings candidate gener-
ating densities q used in practise; the Gibbs sampler, independence sampler
and the random walk sampler. Below we will discuss their relative merits
and problems.

4.6 The Gibbs-sampler

The Gibbs-sampler is often viewed as a separate algorithm rather than a
special case of the Metropolis-Hastings algorithm. It is based on partitioning
the vector state-space Rd = Rd1×· · ·Rdm into blocks of sizes di, i = 1, . . . ,m
such that d1 + · · ·+ dm = d. We will write z = (z1, . . . , zm) = (x1, . . . , xd),
where zi ∈ Rdi (e.g. z1 = (x1, . . . , xd1). With this partition, the Gibbs-
sampler with target f is now:

4.6. THE GIBBS-SAMPLER 15

Algorithm 4.2 (The Gibbs-sampler).

1. Choose a starting value z(0).

2. Repeat for i = 1, . . . , N :

i.1 Draw z
(i)
1 from f(z1|z(i−1)

2 , . . . , z
(i−1)
m).

i.2 Draw z
(i)
2 from f(z2|z(i)1 , z

(i−1)
3 , . . . , z

(i−1)
m).

i.3 Draw z
(i)
3 from f(z3|z(i)1 , z

(i)
2 , z

(i−1)
4 , . . . , z

(i−1)
m).

...

i.m Draw z
(i)
m from f(zm|z(i)1 , z

(i)
2 , . . . , z

(i)
m−1).

3. z(1), z(2), . . . z(N), is now a sequence of dependent draws approxi-
mately from f .

This corresponds to an MH-algorithm with a particular proposal density
and α = 1. What is the proposal density q?

Note the similarity with Algorithm ??. The difference is that here we
draw each zi conditionally on all the others which is easier since these con-
ditional distributions are much easier to derive. For example,

z1 7→ f(z1|z2, . . . , zm) =
f(z1, . . . , zm)

f(z2, . . . , zm)
∝ f(z1, . . . , zm).

Hence, if we know f(z1, . . . , zm), we also know all the conditionals needed
(up to a constant of proportionality). The Gibbs-sampler is the most popular
MCMC algorithm and given a suitable choice of partition of the state-space
it works well for most applications to Bayesian statistics. We will have the
opportunity to study it more closely in action in the subsequent part on
Bayesian statistics of this course. Poor performance occurs when there is
a high dependence between the components Zi. This is due to the fact
that the Gibbs-sampler only moves along the coordinate axes of the vector
(z1, . . . , zm), illustrated by Figure 4.1. One remedy to this problem is to
merge the dependent components into a single larger component, but this
is not always practical.

Example 4.1 (Bivariate Normals). Bivariate Normals can be drawn with
the methods of Examples ?? or ??. Here we will use the Gibbs-sampler
instead. We want to draw from

(X1, X2) ∼ N2

(
0,

(
1 ρ
ρ 1

))
,

and choose partition (X1, X2) = (Z1, Z2). The conditional distributions are
given by

Z1|Z2 = z2 ∼ N(ρz2,
√

1− ρ2) and Z2|Z1 = z1 ∼ N(ρz1,
√

1− ρ2).

16 CHAPTER 4. MARKOV CHAIN MONTE-CARLO

Figure 4.1: For a target (dashed) with strongly dependent components the
Gibbs sampler will move slowly across the support since “big jumps”, like
the dashed move, would involve first simulating a highly unlikely value from
f(z1|z2).

The following script draws 1000 values starting from (z
(0)
1 , z

(0)
2) = (0, 0).

function z=bivngibbs(rho)
z=zeros(1001,2);
for i=2:1000

z(i,1)=randn*sqrt(1-rho^2)+rho*z(i-1,2);
z(i,2)=randn*sqrt(1-rho^2)+rho*z(i,1);

end
z=z(2:1001,:);

In Figure ?? we have plotted the output for ρ = 0.5 and ρ = 0.99. Note the
strong dependence between successive draws when ρ = 0.99. Also note that
each individual panel constitute approximate draws from the same distribu-
tion, i.e. the N(0, 1) distribution.

4.7 Independence proposal

The independence proposal amounts to proposing a candidate value y∗ in-
dependently of the current position of the Markov Chain, i.e. we choose
q(x, y) = q(y). A necessary requirement here is that supp(f) ⊆ supp(q); if
this is not satisfied, some parts of the support of f will never be reached.
This candidate is then accepted with probability

4.7. INDEPENDENCE PROPOSAL 17

0 200 400 600 800 1000
−4

−2

0

2

4

z
1

0 200 400 600 800 1000
−4

−2

0

2

4

iteration

0 200 400 600 800 1000
−4

−2

0

2

4

z
1

0 200 400 600 800 1000
−4

−2

0

2

4

z
2

iteration

Figure 4.2: Gibbs-draws from Example 4.1, left with ρ = 0.5 and right with
ρ = 0.99.

α(x, y∗) =

{
min{f(y

∗)q(x)
f(x)q(y∗) , 1} if f(x)q(y∗) > 0

1 if f(x)q(y∗) = 0

And we immediately see that if q(y) = f(y), α(x, y) ≡ 1, i.e. all candidates
are accepted. Of course, if we really could simulate a candidate directly
from q(y) = f(y) we would not have bothered about implementing an MH
algorithm in the first place. Still, this fact suggests that we should attempt
to find a candidate generating density q(y) that is as good an approximation
to f(y) as possible, similarily to the rejection sampling algorithm. The main
difference is that we don’t need to worry about deriving constants M or K
such that Mf < Kq when we do independence sampling. To ensure good
performance of the sampler it is advisable to ensure that such constants
exists, though we do not need to derive it explicitly. If it does not exist, the
algorithm will have problems reaching parts of the target support, typically
the extreme tail of the target. This is best illustrated with an example;
assume we want to simulate from f(x) ∝ 1/(1 + x)3 using an Exp(1) MH
independence proposal. A plot of (unnormalised) densities q and 1/(1 + x)3

in Figure ?? does not indicate any problems — the main support of the two
densities seem similar. The algorithm is implemented as follows

function [x,acc]=indsamp(m,x0)
x(1:m)=x0;
acc=0;
for i=1:m

y=gamrnd(1,1);
a=min(((y+1)^(-3))*gampdf(x(i),1,1)...

/gampdf(y,1,1)/((x(i)+1)^(-3)),1);
if (rand<a)

x(i+1)=y;
acc=acc+1;

else
x(i+1)=x(i);

end
end

18 CHAPTER 4. MARKOV CHAIN MONTE-CARLO

acc=acc/m;

and 1000 simulated values are shown in the left panel of Figure ?? with
starting value x0=1. Looking at the output does not immediately indicate
any problems either. However, a second run, now with starting value x0=15,
is shown in the right panel of the same figure; 715 proposed moves away from
the tail are rejected.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.3: Unnormalized target 1/(1 + x)3 (dashed) and Exp(1) indepen-
dence proposal (solid).

The problem here is that since the light-tailed proposal density generates
large values too seldom, the chain needs to stay in the tail for a very long time
once it gets there to preserve stationarity. As a consequence this induces
large autocorrelation which reduces the information contained in the output.

The main problem with the independence sampler is that unless q is a
good approximations of f (and especially so in high dimensional problems),
most proposals will be rejected and as a consequence autocorrelations high.

4.8 Random walk proposal

While the independence sampler needs careful consideration when choos-
ing a candidate generating kernel q, random walk kernels are more “black
box”. As a drawback they will never be quite as efficient as a finely tuned
independence proposal.

Random walk proposals are characterised by q(x, y) = g(|x−y|), i.e. they
are symmetric centered around the current value, and as a consequence α

4.8. RANDOM WALK PROPOSAL 19

0 200 400 600 800 1000
0

2

4

6

8

10

12

14

16

0 200 400 600 800 1000
0

2

4

6

8

10

12

14

16

Figure 4.4: Output from independence sampler. Left with small starting
value and right starting from the tail.

simplifies to

α(x, y) = min{f(y)/f(x), 1}.

Note especially that moves to areas with higher density, f(y∗) > f(x),
are always accepted.

A common choice is to let g be an N(0, s2Σ) density with a suitably
chosen covariance matrix Σ and a scaling constant s. In this case proposals
are generated by adding a zero-mean Gaussian vector to the current state,
y∗ = x + sε where ε ∈ N(0,Σ). What remains for the practitioner in this
case is the choice of scaling constant s and covariance matrix Σ. The latter
choice is difficult and in practise Σ is often chosen to be a diagonal matrix
of ones. For s some general rules of thumb can be derived though. Lets first
look at a simple example:

The function rwmh.m implements a Gaussian random-walk for a standard
Gaussian target density given input N number of iterations, x0 starting value
and s scaling constant:

function [x,acc]=rwmh(N,x0,s);
x(1:N)=x0;
acc=0;
for i=1:N-1

y=x(i)+s*randn;
a=min(exp(-y^2/2+x(i)^2/2),1);
if rand<a

x(i+1)=y;

20 CHAPTER 4. MARKOV CHAIN MONTE-CARLO

acc=acc+1;
else

x(i+1)=x(i);
end

end

In Figure ?? we have plotted outputs from 1000 iterations with x0=0 and
scales s set to 0.3, 30 and 3. For the smallest scaling constant almost all of
the proposed moves are accepted (908 out of 1000) but they are too small
and the chain travels slowly across the support of f . For s = 30 very few
proposals are accepted (48 out of 1000), but they are all very “innovative”.
Finally the result using s = 3 looks most promising. The methods can be
compared by estimating the auto-correlation functions of the output as is
done in Figure ??. Here it is clear that if our goal is to estimate the mean,
this will be most efficient for s = 3.

0 100 200 300 400 500 600 700 800 900 1000
−4

−2

0

2

4

0 100 200 300 400 500 600 700 800 900 1000
−5

0

5

0 100 200 300 400 500 600 700 800 900 1000
−4

−2

0

2

4

Figure 4.5: Random walks with too small s (top), too large s (middle) and
well-tuned s (bottom)

Are there any general rules of thumb on how to choose random-walk scale
s? The answer is yes, at least asymptotically. It turns out monitoring the
acceptance rate is the key, and that for a large class of densities f : Rd 7→ R,
asymptotically, as d → ∞, it is optimal to choose s in such a way that
23.4. . . % of the proposed moves are accepted (when d = 1 a slightly higher
acceptance rate is often favourable). This is optimal for any fixed Σ.

Returning to the choice of Σ, note in Figure ?? that if we set Σ to be a
diagonal matrix of ones, the random-walk sampler will have similar problems
with dependent components as the Gibbs-sampler.

4.8. RANDOM WALK PROPOSAL 21

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.6: Autocorrelation functions for the output with s = .3 (dotted)
s = 30 (dashed) and s = 3 (solid)

1
θ

θ
2

θ
1

θ
2

Figure 4.7: Left panel: With a symmetric random-walk proposal (solid con-
tours) tuned to the optimal acceptance rate, movement will be slow if cor-
relation of the posterior (dashed contours) is strong or variances different.

In addition, orthogonalising does not help unless we also standardise
variances. A good choice of Σ is one that is similar to the covariance matrix
of the target (up to a proportionality constant). An approximation that is
often useful is to let Σ be proportional to the Hessian matrix of log f (i.e.
H(x) with entries Hi,j = d(log f)2/(dxi dxj)) evaluated at e.g. a mode of f
if this can be found.

22 CHAPTER 4. MARKOV CHAIN MONTE-CARLO

4.8.1 Multiplicative random walk

If the target has a very heavy tail, the random walk proposal will generally
perform poorly. In a similar fashion to the independence sampler with a
light-tailed proposal, since it takes the chain a long time to travel all the
way to the tail, it will stay there for a long time when it reaches it.

0 200 400 600 800 1000
0

10

20

30

40

50

60

iteration

Figure 4.8: Typical behaviour of a random walk Metropolis Hastings on
a heavytailed target. Seemingly stable behaviour is exchanged with long
excursions in the tails.

In this situation, a Multiplicative random-walk proposal is often more
efficient. The random-walk proposal is formed by adding an independent
component, y∗ = x(i−1) + ε, the multiplicative random-walk instead multi-
plies with an independent component, y∗ = x(i−1)ε. If we denote the density
of ε by g, the proposal-generating density is q(x, y) = g(y/x)/x and we ac-
cept/reject with probability

α(x, y) = min(1,
f(y)g(x/y)x

f(x)g(y/x)y
).

4.9 Hybrid strategies

In statistical problems there is often a natural choice of partition for the
Gibbs-sampler, however one or more of the conditional distributions in Al-
gorithm 4.2 might be difficult to sample from directly. In this case, an exact
draw from the tricky conditionals can be replaced by one iteration of the
Metropolis-Hastings algorithm. This strategy is often necessary in complex

4.9. HYBRID STRATEGIES 23

problems and is sometimes referred to as the Metropolis–within–Gibbs al-
gorithm.

