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Chapter 3

Monte-Carlo integration

Many quantities of interest to statisticians can be formulated as integrals,
r= Bo(X) = [ o) (@) (31)

where X € R%, ¢ : R? — R and f is the probability density of X. Note
that probabilities correspond to ¢ being an indicator function, i.e.

P(X € A) = /1{35 € AMf(x) dr,

where

1 ifze A

1{z € A} = { 0 e (3.2)

When dimension n is large and/or ¢f complicated, the integration in
can often not be performed analytically. Monte-Carlo integration is
a numerical method for integration based on the Law of Large Numbers
(LLN). The algorithm goes as follows:

Algorithm 3.1 (Basic Monte-Carlo Integration).

1. Draw N values z1,...,zy independently from f.

2. Approximate 7 = E(¢(X)) by

ty =t(1,....0n) = + Z(;S(:ci).

As an example of this, suppose we wish to calculate P(X < 1,Y < 1) where
(X,Y) are bivariate normal distribution with correlation 0.5 and having
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12 CHAPTER 3. MONTE-CARLO INTEGRATION

standard normal distribution for marginals. This can be written as

/1{£U <lLy<1}f(z,y)dxdy (3.3)

where f is the bivariate normal density. Thus, provided we can simulate
from the bivariate normal, we can estimate this probability as

'Y 1o <1,y < 1) (3.4)
=1

which is simply the proportion of simulated points falling in the set defined
by {(z,y);z < 1,y < 1}. Here we use the approach from Example ?? for
simulating bivariate normals. R code to achieve this is

bvnsim=function(n,m,s,r){

x=rnorm(n)*s[1]+m[1]
y=rnorm(n)*s[2] *sqrt (1-r~2)+m[2] +(r*s[2]) /s [1]1*(x-m[1])
bvnsim=matrix(0,ncol=2,nrow=n)

bvnsim([,1]=x

bvnsim[,2]=y

bvnsim

}

To obtain an estimate of the required probability on the basis of, say, 1000
simulations, we simply need

X=bvnsim(1000,c(0,0),c(1,1),.5);
mean ((X[,1]1<1)&(X[,2]<1))

I got the estimate 0.763 doing this. A scatterplot of the simulated values is
given in Figure

Example 3.1. For a non-statistical example, say we want to estimate the
integral

27
T = /0 xsin[1/ cos(log(z + 1))]? dz
= /(27rx sin[1/ cos(log(x + 1))]*)(1{0 < = < 2r}/(27)) du,

where, of course, the second term of the integrand is the U[0, 27| density
function. The integrand is plotted in Figure 3.2 and looks to be a challenge
for many numerical methods.

Monte-Carlo integration in R proceeds as follows:

x=runif (10000) *2*pi

tn=mean (2*pi*x*sin(1/cos(log(x+1)))~2)
tn

[1] 8.820808



Figure 3.1: Simulated bivariate normals

w
o
T

w
T

N
T

x sin(1/cos(log(x+1 )))2
N
[}

_
o
T

0.5

Figure 3.2: An attempt at plotting x sin(1/ cos(log(z + 1)))2.
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Maple, using evalf on the integral, gave 8.776170832. A larger run of the
Monte-Carlo algorithm shows that this might be an overestimate and that
the true value is close to 8.756.

We suggested the motivation comes from the LLN. There are many ver-
sions of this celebrated theorem, we will provide a simple mean-square ver-
sion. First note that if Xq,...,X,, is a sequence of random variables and
T, = t(Xy,...,X,) for a function ¢, we say that T,, converges in the mean
square sense to a fixed value 7 if

E(T, —7)% = 0 as n — oo.
Theorem 3.1 (A Law of Large Numbers). Assume Z1,...,Z, is a sequence

of independent random variables with common means FE(Z;) = T and vari-

ances Var(Z;) = o If T, =n~' 31 | Z;, we have

2
E(Tn—7)220——>0 as n — oo. (3.5)
n
Proof. Simple and straightforward; exercise. O

The above theorem tells us that with Z; = ¢(X;) where X; are indepen-
dent with density f, the arithmetic mean of Z1,..., Z, converges in mean
square error to 7 = E(g(X)). Moreover, it gives the precise rate of the error:
(E(T, — 7)>)Y/2 = O(n~'/?) and this rate is independent of dimension d.
This is in contrast to deterministic methods for numerical integration, like
the trapezoidal rule and Simpson’s rule, that have errors of O(n_2/ d) and
O(n_4/ 4) respectively. Monte-Carlo integration is to be preferred in high
dimensions (greater than 4 and 8 respectively). Another advantage is that
we can reuse the drawn values xz1,...,xyN to estimate other expectations
with respect to f without much extra effort.

More precise information on the Monte-Carlo error (7, — 7) is given by
celebrated result no. 2: the Central Limit Theorem (CLT).

Theorem 3.2 (Central Limit Theorem). Assume Z1,...,Z, is a sequence
of i.i.d. random variables with common means E(Z;) = T and variances
Var(Z;) = o?. If T, =n~t 31" | Z;, we have

P(M < :1:) — ®(z) as n — oo, (3.6)

o
where ® is the distribution function of the N(0,1) distribution.

Proof. Almost as simple, but somewhat less straightforward than LLN. Look
it up in a book. ]

Slightly less formally, the CLT tells us that the difference T,, — 7 has,
at least for large n, approximately an N(0,02/n) distribution. With this
information we can approximate probabilities like P(|T,, — 7| > ¢€), and
perhaps more importantly find e such that P(|T,, — 7| > ¢) = 1 — « for
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some specified confidence level a. To cut this discussion short, the random
interval

[T, — 1.966//n, T, + 1.966/ /7] (3.7)

will cover the true value 7 with approximately 95% probability. Here & is
your favourite estimate of standard deviation, e.g. based on

s2= L > (2 - 2)% (3.8)

n—14
=1

and 1.96 is roughly ®~1(0.95), the standard Normal 95% quantile.
A similar result to the central limit theorem also holds for the median
and general sample quantiles:

Theorem 3.3. Assume Z1,...,Z, is a sequence of i.i.d. random variables
with distribution function F(z — 1) such that F(0) = « and that at zero F
has density f(0) > 0. Then

P(\/Can(Z(na)y — 7) < ) = ®(7) as n — oo, (3.9)

where Cy = a(1 — a) f2(0) and ® is the distribution function of the N(0,1)
distribution.

Exercise 3.1. Let (X1, X2, X3) have the trivariate exponential distribution
with density proportional to

exp(—x1 — 2xg — 3x3 — max(z1,x2,x3)), = >0, i=1,...,3.

Construct an algorithm that draws from (X1, Xo, X3) using the rejection
method, proposing a suitable vector of independent exponentials.

Use basic Monte-Carlo integration to produce an approximate 95% ac-
curacy interval for the probability P(X? + X3 < 2).

Exercise 3.2. Let n(k) be the number of primes less than k. How can
you approzimate 7(10%) without having to check all integers less than 10°?
You could use the famous prime-number theorem, which says that w(k) =~
k/log(k) for large k. See the following Wikipedia link for more details on
historical and mathematical aspects of this result: |Prime Number Theorem,.
We will not this “deterministic result”. Instead, let X be uniformly dis-
tributed on the odd numbers {1,3,...,10° — 1} (but remember that 2 is also
a prime). Let ¢ be an indicator of a prime number, i.e. it is a function that
takes value one if its argument is prime and zero otherwise.

Find the (simple) relation between the expected value E(1)(X)) and m(10°).
Then use Monte-Carlo method to approzimate m(10°) by sampling X1, ..., X,
from X averaging ¥(X;), i =1,...,n. By what a result in probability theory
averaging approzimates the expected value of E((X)). You might find R
package ‘primes]| with its is_prime function useful here. Provide with the
error assessment. Compare your result with the prime-number theorem.


http://en.wikipedia.org/wiki/Prime_number_theorem
https://cran.r-project.org/web/packages/primes/primes.pdf
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Bias and the Delta method

It is not always that we can find a function ¢, such that E(T,) = 7. For
example we might be interested in 7 = h(E(X)) for some specified smooth
function h. If X again is the arithmetic mean, then a natural choice is
T, = h(X). However, unless h is linear, F(T},) is not guaranteed to equal
7. This calls for a definition: the bias of ¢ (when viewed as an estimator of
T), Tn =t(X1,...,Xp) is

Bias(t) = E(T,,) — . (3.10)

The concept of bias allows us to more fully appreciate the concept of mean
square error, since

E(T,, — 7)? = Var(T},) + Bias?(t), (3.11)

(show this as an exercise). The mean square error equals variance plus
squared bias. In the above mentioned example, a Taylor expansion gives an
impression of the size of the bias. Roughly we have with u = E(X)

E(T, — ) = E[h(X) — h(u)]

2
~ B(X — i)+ P
:Vﬁgﬁwmm (3.12)

And it is reassuring that suggests a small bias when sample size n
is large. Moreover, since variance of Tj, generally is of order O(n~!) it
will dominate the O(n~2) squared bias in suggesting that bias is a
small problem here (though it can be a serious problem if the above Taylor
expansions are not valid). -

We now turn to the variance of T;,. First note that while Var(X) is easily
estimated by e.g. , estimating Var(h(X)) is not so straightforward. An
useful result along this line is the Delta Method

Theorem 3.4 (The Delta method). Let r, be an increasing sequence and
Sn a sequence of random variables. If there is u such that h is differentiable
at p and

P(ry,(Sp, —p) <z) — F(x), asn — oo
for a distribution function F, then
P(rn(h(Sp) = h(p)) < x) = F(z/|h (1))).
Proof. Similar to the Taylor expansion argument in . O

This theorem suggests that if S,, = X has variance o2 /r,, then the vari-
ance of T,, = h(S,,) will be approximately o>h/(11)? /r,, for large n. Moreover,
if Sy, is asymptotically normal, so is T,.
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Exercise 3.3. Implement Monte Carlo evaluation of integral
2
— / x2|sinzz’\ex cos3/? T .
0

Analyze the error of your evaluation. Suppose that one is interested in
the accuracy of I=2 from the obtained approxzimation of I. Apply the delta
method to assess this accuracy.
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