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Chapter 3

Monte-Carlo integration

3.1 Generic Monte Carlo integration

3.2 Bias and the Delta method

3.3 Variance reduction by rejection sampling

The method based on uniform sampling is simple but also not very inteligent.
After all uniform distribution contains no information about the function at
integral of which we aim. Through uniform samples we sometimes sample
over regions were values of the function that do contribute much to the value
of the integral but equally often (uniformly) we sample over regions where
this is not true. Due to this we have large variability in the approximations
– large variance. One can try to reduce this variability by being smarter,
i.e. by utilizing some information about the function. In fact one method of
achieving it can utilize rejection sampling algorithm that was discussed as
a method of sampling from a distribution. There we were approximating a
shape of the density (up to the normalizing constant) by the shape of a pro-
posal density from which we could sample. The fact that the method worked
without necessity of knowing the normalizing constants can be utilized here.

Consider a known density f(x) on (a, b) from which one can simulate
samples. Let us assume that φ(x) > 0 is a function on (a, b) from which
an integral is supposed to be approximated. Let a constant K be such
that φ(x) ≤ Kf(x). Consider 0-1 random variables Xi indicating if the ith
attempt in rejection sampling is rejected or accepted. Then

P (Xi = 1) =

∫ b
a φ(x) dx

K
.

Since Xi are iid thus by the LLN

În = KX̄ ≈
∫ b

a
φ(x) dx.
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One can easily see that the variance of the method is given by

V ar(În) = K2

∫ b
a φ(x) dx

K

(
1−

∫ b
a φ(x) dx

K

)
/n =

∫ b

a
φ(x) dx

(
K −

∫ b

a
φ(x) dx

)
/n.

Thus if K is close to
∫ b
a φ(x) dx the variance can be small.

Exercise 3.1. Consider a distribution on [0, π] given by the cdf

F (u) =
1− e−u2/2
1− eπ2/2

.

The simulation from this distribution is easily achieved by inverting the cdf.
One can use the discussed method to evaluate the integral of

φ(x) = x
√

sinxe−x
2
, x ∈ [0, π].

Perform the analysis comparing variance of the method with the variance
of the method based on uniform sampling over the interval [0, π].

The idea of variance reduction that is evident in our rejection algorithm
is further explored by a similar but slightly more advanced and more popular
method that is discussed next.

3.4 Variance reduction by importance sampling

Importance sampling is a technique that might substantially decrease the
variance of the Monte-Carlo error. It can also be used as a tool for estimating
E(φ(X)) in cases where X can not be sampled easily.

We want to calculate

τ =

∫
φ(x)f(x)dx (3.1)

which can be re–written

τ =

∫
ψ(x)g(x)dx (3.2)

where ψ(x) = φ(x)f(x)/g(x). Hence, if we obtain a sample x1, x2, . . . , xn
from the distribution of g, then we can estimate the integral by the unbiased
estimator

tn = n−1
n∑
i=1

ψ(xi), (3.3)

for which the variance is

Var(Tn) = n−1
∫
{ψ(x)− τ}2g(x)dx. (3.4)
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This variance can be very low, much lower than the variance of an esti-
mate based on draws from f , provided g can be chosen so as to make ψ
nearly constant. Essentially what is happening is that the simulations are
being concentrated in the areas where there is greatest variation in the in-
tegrand, so that the informativeness of each simulated value is greatest.
Another important advantage of importance sampling comes in problems
where drawing from f is difficult. Here draws from f can be replaced by
draws from an almost arbitrary density g (though it is essential that φf/g
remain bounded).

This example illustrates the idea. Suppose we want to estimate the
probability P (X > 2), where X follows a Cauchy distribution with density
function

f(x) =
1

π(1 + x2)
(3.5)

so we require the integral ∫
1{x > 2}f(x)dx. (3.6)

We could simulate from the Cauchy directly and apply basic Monte-Carlo
integration, but the variance of this estimator is substantial. As with the
bivariate Normal example, the estimator is the empirical proportion of ex-
ceedances; exceedances are rare, so the variance is large compared to its
mean. Put differently, we are spending most of our simulation budget on
estimating the integral of 1{x > 2}f(x) over an area (i.e. around the origin)
where we know it equals zero.

Alternatively, we observe that for large x, f(x) is similar in behaviour
to the density g(x) = 2/x2 on x > 2. By inversion, we can simulate from g
by letting xi = 2/ui where ui ∼ U [0, 1]. Thus, our estimator becomes:

tn = n−1
n∑
i=1

x2i
2π(1 + x2i )

, (3.7)

where xi = 2/ui. Implementing this with the R-function

impsamp=function(n){
x=2/runif(n)
psi=x^2/(2*pi*(1+x^2))
tn=mean(psi)
cum=cumsum(psi)/seq(1,n,by=1)
impsamp=list(tn=tn,cum=cum)

}

and processing

is=impsamp(1000);
plot(is$cum, type=’l’)\
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Figure 3.1: Convergence of importance sampled mean

gave the estimate tn = .1478. The exact value is .5− π−1 tan 2 = .1476.
In Figure 3.1 the convergence of this sample mean to the true value is demon-
strated as a function of n by plotting the additional output vector cum.

For comparison, in Figure 3.2, we show how this compares with a se-
quence of estimators based on the sample mean when simulating directly
from a Cauchy distribution. Clearly, the reduction in variability is substan-
tial (the importance sampled estimator looks like a straight line).

3.4.1 Unknown constant of proportionality

To be able to use the above importance sampling techniques, we need to
know f(x) explicitly. Just knowing Mf for an unknown constant of pro-
portionality M is not sufficient. However, importance sampling can also be
used to approximate M . Note that,

M =

∫
Mf(x) dx =

∫
Mf(x)

g2(x)
g2(x) dx, (3.8)

for a density g2. Thus, based on a sample x1, x2, . . . , xN from g2, we can
approximate M by

tN =
1

N

N∑
i=1

Mf(xi)

g2(xi)
. (3.9)
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Figure 3.2: Comparison of importance sampled mean with standard esti-
mator

It should be noted that this approximation puts some restrictions on the
choice of g2. To have a finite variance, we need (with X ′ ∼ g2)

E

(
(Mf(X ′))2

g2(X ′)2

)
=

∫
(Mf(x))2

g2(x)
dx,

to be finite, i.e. f2/g2 is integrable. Hence, a natural requirement is that
f/g2 is bounded. This can now be used to approximate τ = E(φ(X)) using
sequences x1, x2, . . . , xN from g2 and y1, y2, . . . , yN from g through

t′N
tN

=

(
N∑
i=1

φ(yi)Mf(yi)

g(yi)

)/( N∑
i=1

Mf(xi)

g2(xi)

)
, (3.10)

where the numerator approximates Mτ and denominator M . Of course we
could use g = g2 and xi = yi in (3.10), but this is not usually the most
efficient choice.
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