
Monte Carlo Methods

Lecture notes for MAP001169

Based on Script by Martin Sköld

adopted by Krzysztof Podgórski

2

Contents

I Simulation and Monte-Carlo Integration 5

1 Simulation and Monte-Carlo integration 7
1.1 Issues in simulation . 7
1.2 Buffon’s Needle . 7
1.3 Raw ingredients . 10

2 Simulating from specified distributions 11
2.1 Transforming uniforms . 11
2.2 Transformation methods . 14
2.3 Rejection sampling . 15
2.4 Conditional methods . 19

3 Monte-Carlo integration 21
3.1 Generic Monte Carlo integration 21
3.2 Bias and the Delta method 25
3.3 Variance reduction by rejection sampling 26
3.4 Variance reduction by importance sampling 27

3.4.1 Unknown constant of proportionality 29

4 Markov Chain Monte-Carlo 33
4.1 Markov chains - basic concepts 33
4.2 Markov chains with continuous state-space 36
4.3 Markov chain Monte-Carlo integration 37

4.3.1 Burn-in . 37
4.3.2 After burn-in . 39

4.4 Two continuous time Markov chain models 40
4.4.1 Autoregressive model 40
4.4.2 Modeling cloud coverage 40

4.5 The Metropolis-Hastings algorithm 41
4.6 The Gibbs-sampler . 42
4.7 Independence proposal . 45
4.8 Random walk proposal . 46

4.8.1 Multiplicative random walk 50
4.9 Hybrid strategies . 50

3

4 CONTENTS

Part I

Simulation and Monte-Carlo
Integration

5

Chapter 1

Simulation and Monte-Carlo
integration

1.1 Issues in simulation

Whatever the application, the role of simulation is to generate data which
have (to all intents and purposes) the statistical properties of some specified
model. This generates two questions:

1. How to do it; and

2. How to do it efficiently.

To some extent, just doing it is the priority, since many applications are
sufficiently fast for even inefficient routines to be acceptably quick. On the
other hand, efficient design of simulation can add insight into the statistical
model itself, in addition to CPU savings. We’ll illustrate the idea simply
with a well–known example.

1.2 Buffon’s Needle

We’ll start with a simulation experiment which has intrinsically nothing
to do with computers. Perhaps the most famous simulation experiment is
Buffon’s needle, designed to calculate (not very efficiently) an estimate of π.
There’s nothing very sophisticated about this experiment, but for me I really
like the ‘mystique’ of being able to trick nature into giving us an estimate
of π. There are also a number of ways the experiment can be improved
on to give better estimates which will highlight the general principle of
designing simulated experiments to achieve optimal accuracy in the sense of
minimizing statistical variability.

Buffon’s original experiment is as follows. Imagine a grid of parallel lines
of spacing d, on which we randomly drop a needle of length l, with l ≤ d.
We repeat this experiment n times, and count R, the number of times the

7

8 CHAPTER 1. SIMULATION AND MONTE-CARLO INTEGRATION

needle intersects a line. Denoting ρ = l/d and φ = 1/π, an estimate of φ is

φ̂0 =
p̂

2ρ

where p̂ = R/n.

Thus, π̂0 = 1/φ̂0 = 2ρ/p̂ estimates π.
The rationale behind this is that if we let x be the distance from the

centre of the needle to the lower grid point, and θ be the angle with the
horizontal, then under the assumption of random needle throwing, we’d
have x ∼ U [0, d] and θ ∼ U [0, π]. Thus

p = Pr(needle intersects grid)

=
1

π

∫ π

0
Pr(needle intersects |θ = φ)dφ

=
1

π

∫ π

0

(
2

d
× l

2
sinφ

)
dφ

=
2l

πd

A natural question is how to optimise the relative sizes of l and d. To
address this we need to consider the variability of the estimator φ̂0. Now,
R ∼ Bin(n, p), so Var(p̂) = p(1−p)/n. Thus Var(φ̂0) = 2ρφ(1−2ρφ)/4ρ2n =
φ2(1/2ρφ − 1)/n which is minimized (subject to ρ ≤ 1) when ρ = 1. That
is, we should set l = d to optimize efficiency.

Then, φ̂0 = p̂
2 , with Var(φ̂0) = (φ/2− φ2)/n.

Figure 1.1 gives 2 realisations of Buffon’s experiment, based on 5000
simulations each. The figures together with an estimate can be produced in
R by

buf=function(n,d,l){

x=runif(n)*d/2

theta=runif(n)*pi/2

I=(l*cos(theta)/2>x)

R=cumsum(I)

phat=R/(1:n)

nn=1:n

plot(nn[phat>0],2*l/d/phat[phat>0],xlab=’proportion of hits’,ylab=’pi estimate’,type=’l’)

}

Exercise 1.1. Provide with the full details in the argument above which
showed that the optimality is achieved for the estimator φ̂.

Use the R-code given above and design a Monte Carlo study that confirms
(or not) that optimality is also achieved for π̂ when ρ = 1, i.e. d = l. First,
explain why it is not obvious. When discussing this review the concepts
of the bias, the variance and the mean-square error and relations between
these three. Then explain or/and analyze numerically what is the bias, the

variance and the mean-square error of φ̂ and π̂. Hint: Note that the event
that the needle does not crosses the line in any trial has a positive probability

1.2. BUFFON’S NEEDLE 9

number of simulations

pr
op

or
tio

n
of

 h
its

0 1000 2000 3000 4000 5000

3
4

5
6

number of simulations

pr
op

or
tio

n
of

 h
its

0 1000 2000 3000 4000 5000

3.
0

3.
5

4.
0

4.
5

5.
0

Figure 1.1: Two sequences of realisations of Buffon’s experiment

and this affects existence of the mean and the variance of π̂. Modify the
estimator to avoid the problem.

The argument given above assumed that l ≤ d. Modify the algorithm to
investigate also the case of d < l. Investigate the optimality in this case.

Thus I’ve used the computer to simulate the physical simulations. You
might like to check why this code works.

There are a catalogue of modifications which you can use which might
(or might not) improve the efficiency of this experiment. These include:

1. Using a grid of rectangles or squares (which is best?) and basing
estimate on the number of intersections with either or both horizontal
or vertical lines.

2. Using a cross instead of a needle.

3. Using a needle of length longer than the grid separation.

So, just to re–iterate, the point is that simulation can be used to answer
interesting problems, but that careful design may be needed to achieve even
moderate efficiency.

10CHAPTER 1. SIMULATION AND MONTE-CARLO INTEGRATION

1.3 Raw ingredients

The raw material for any simulation exercise is random digits: transforma-
tion or other types of manipulation can then be applied to build simulations
of more complex distributions or systems. So, how can random digits be
generated?

It should be recognised that any algorithmic attempt to mimic random-
ness is just that: a mimic. By definition, if the sequence generated is de-
terministic then it isn’t random. Thus, the trick is to use algorithms which
generate sequences of numbers which would pass all the tests of random-
ness (from the required distribution or process) despite their deterministic
derivation. The most common technique is to use a congruential generator.
This generates a sequence of integers via the algorithm

xi = axi−1(mod M) (1.1)

for suitable choices of a and M . Dividing this sequence by M gives a se-
quence ui which are regarded as realisations from the Uniform U [0, 1] distri-
bution. Problems can arise by using inappropriate choices of a and M . We
won’t worry about this issue here, as any decent statistics package should
have had its random number generator checked pretty thoroughly. The
point worth remembering though is that computer generated random num-
bers aren’t random at all, but that (hopefully) they look random enough for
that not to matter.

In subsequent sections then, we’ll take as axiomatic the fact that we can
generate a sequence of numbers u1, u2, . . . , un which may be regarded as n
independent realisations from the U [0, 1] distribution.

Chapter 2

Simulating from specified
distributions

In this chapter we look at ways of simulating data from a specified distribu-
tion function F , on the basis of a simulated sample u1, u2, . . . , un from the
distribution U [0, 1].

2.1 Transforming uniforms

We start with the case of constructing a draw x from a random variable
X ∈ R with a continuous distribution F on the basis of a single u from
U [0, 1]. It is natural to try a simple transformation x = h(u), but how should
we choose h? Let’s assume h is increasing with inverse h−1 : R 7→ [0, 1].
The requirement is now that

F (v) = P (X ≤ v) = P (h(U) ≤ v,)
= P (h−1(h(U)) ≤ h−1(v)) = P (U ≤ h−1(v))

= h−1(v),

for all v ∈ R and where in the last step we used that the distribution function
of the U [0, 1] distribution equals P (U ≤ u) = u, u ∈ [0, 1]. The conclusion
is clear, we should choose h = F−1. If F is not one-to-one, as is the case
for discrete random variables, the above argument remains valid if we define
the inverse as

F−1(u) = inf{x;F (x) ≥ u}. (2.1)

The resulting algorithm for drawing from F is the Inversion Method :

Algorithm 2.1 (The Inversion Method).

1. Draw u from U [0, 1].

2. x = F−1(u) can now be regarded a draw from F .

11

12 CHAPTER 2. SIMULATING FROM SPECIFIED DISTRIBUTIONS

Figure 2.1 illustrates how this works. For example, to simulate from the

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

u

U

X

F

Figure 2.1: Simulation by inversion; the random variable X = F−1(U) will
have distribution F if U is uniformly distributed on [0, 1].

exponential distribution we have F (x) = 1− exp(−λx), so

F−1(u) = −λ−1 log(1− u).

Thus with

u=runif(1,n);
x=-(log(1-u))/lambda;

we can simulate n independent values from the exponential distribution with
parameter lambda. Figure 2.2 shows a histogram of 1000 standard (λ = 1)
exponential variates simulated with this routine.

For discrete distributions, the procedure then simply amounts to search-
ing through a table of the distribution function. For example, the distribu-
tion function of the Poisson(2) distribution is

x F(x)

0 0.1353353
1 0.4060058
2 0.6766764
3 0.8571235
4 0.9473470
5 0.9834364
6 0.9954662

2.1. TRANSFORMING UNIFORMS 13

0 2 4 6

0
10
0

20
0

30
0

x

fre
qu
en
cy

Figure 2.2: Histogram of 1000 simulated unit exponential variates

7 0.9989033
8 0.9997626
9 0.9999535
10 0.9999917

so, we generate a sequence of standard uniforms u1, u2, . . . , un and for each
ui obtain a Poisson(2) variate xi where F (xi − 1) < ui ≤ F (xi). So, for
example, if u1 = 0.7352 then x1 = 3.

The limitation on the efficiency of this procedure is due to the necessity
of searching through the table, and there are various schemes to optimize
this aspect.

Returning to the continuous case, it may seem that the inversion method
is sufficiently universal to be the only method required. In fact, there are
many situations in which the inversion method is either (or both) compli-
cated to program or excessively inefficient to run. The inversion method is
only really useful if the inverse distribution function is easy to program and
compute. This is not the case, for example, with the Normal distribution
function for which the inverse distribution function, Φ−1, is not available an-
alytically and slow to evaluate numerically. An even more serious limitation
is that the method only applies for generating draws from univariate ran-
dom variables. To deal with such cases, we turn to a variety of alternative
schemes.

14 CHAPTER 2. SIMULATING FROM SPECIFIED DISTRIBUTIONS

2.2 Transformation methods

The inversion method is a special case of more general transformation meth-
ods. The following theorem can be used to derive the distribution of Z =
h(X) for a more general class of real-valued random variables X.

Theorem 2.1 (Transformation theorem). Let X ∈ X ⊆ R have a contin-
uous density f and h a function with differentiable inverse g = h−1. Then
the random variable Z = h(X) ∈ R has density

f(g(z))|g′(z)|, (2.2)

for z ∈ h(X) and zero elsewhere.

Proof. The proof is a direct application of the change-of-variable theorem
for integrals. Note that two random variables X and Z have the same
distribution iff P (X ∈ A) = P (Z ∈ A) for all sets A.

This device is used extensively in simulation, for example when we want
to generate a N(µ, σ2) variate y, it is common to first draw x from N(0, 1)
and then set y = σx+µ. Use Theorem 2.1 to show that this works. Sums of
random variables can also be useful in creating new variables. Recall that

Theorem 2.2. Let X ∈ R and Y ∈ R be independent with densities f and g
respectively, then the density of Z = X+Y equals f ∗g(z) =

∫
f(t−z)g(t) dt.

This can be used to generate Gamma random variables. A random
variable X has a Gamma(a, 1) distribution if its density is proportional to
xa−1 exp(−x), x > 0. Using Theorem 2.2 we can show that if X and Y are
independent Gamma(a, 1) and Gamma(a′, 1) respectively, then Z = X + Y
has a Gamma(a + a′, 1) distribution. Since Gamma(1, 1) (i.e. Exponen-
tial(1)) variables are easily generated by inversion, a Gamma(k, 1) variable
Z, for integer values k, is generated by

z =

k∑
i=1

− log(uk) (2.3)

using independent draws of uniforms u1, . . . , un. As an alternative we can
use a combination of Theorems 2.1 and 2.2 to show that

z =
2k∑
i=1

x2i /2 (2.4)

is a draw from the same distribution if x1, . . . , x2k are independent standard
Normal draws.

Example 2.1 (The Box-Muller transformation). This is a special trick to
simulate from the Normal distribution. In fact it produces two independent
variates in one go. Let u1, u2 be two independently sampled U[0, 1] variables,
then it can be shown that

x1 =
√
−2 log(u2) cos(2πu1) and x2 =

√
−2 log(u2) sin(2πu1)

are two independent N(0, 1) variables.

2.3. REJECTION SAMPLING 15

Below we give the multivariate version of Theorem 2.1.

Theorem 2.3 (Multivariate transformation theorem). Let X ∈ X ⊆ Rd

have a continuous density f and h : X 7→ Rd a function with differentiable
inverse g = h−1. Further write J(z) for the determinant of the Jacobian
matrix of g = (g1, . . . , gd),

J(x) =

∣∣∣∣∣∣∣
dg1(z)/dz1 . . . dg1(z)/dzd

...
. . .

...
dgd(z)/dz1 . . . dgd(z)/dzd

∣∣∣∣∣∣∣ . (2.5)

Then the random variable Z = h(X) ∈ Rd has density

f(g(z))|J(z)|, (2.6)

for z ∈ h(X) and zero elsewhere.

Example 2.2 (Choleski method for multivariate Normals). The Choleski
method is a convenient way to draw a vector z from the multivariate Nor-
mal distribution Nn(0,Σ) based on a vector of n independent N(0, 1) draws
(x1, x2, . . . , xn). Choleski decomposition is a method for computing a ma-
trix C such that CCT = Σ, in R the command is chol. We will show
that z = Cx has the desired distribution. The density of X is f(x) =

(2π)−d/2 exp(−xTx/2) and the Jacobian of the inverse transformation, x =

C−1z, equals J(z) = |C−1| = |C|−1 = |Σ|−1/2. Hence, according to Theorem
2.3, the density of Z equals

f(C−1z)|Σ|−1/2 = (2π)−d/2 exp(−(C−1z)T (C−1z)/2)|Σ|−1/2

= (2π)−d/2 exp(−zTΣ−1z/2)|Σ|−1/2,

which we recognise as the density of a Nn(0,Σ) distribution. Of course,
z + µ, µ ∈ Rd is a draw from Nn(µ,Σ).

2.3 Rejection sampling

The idea in rejection sampling is to simulate from one distribution which is
easy to simulate from, but then to only accept that simulated value with
some probability p. By choosing p correctly, we can ensure that the sequence
of accepted simulated values are from the desired distribution.

The method is based on the following theorem:

Theorem 2.4. Let f be the density function of a random variable on Rd

and let Z ∈ Rd+1 be a random variable that is uniformly distributed on the
set A = {z; 0 ≤ zd+1 ≤ Mf(z1, . . . , zd)} for an arbitrary constant M > 0.
Then the vector (Z1, . . . , Zd) has density f .

16 CHAPTER 2. SIMULATING FROM SPECIFIED DISTRIBUTIONS

Proof. First note that∫
A
dz =

∫
Rd

(∫ Mf(z1,...,zd)

0
dzd+1

)
dz1 · · · dzd

= M

∫
f(z1, . . . , zd) dz1 · · · dzd = M.

Hence, Z has density 1/M on A. Similarily, with B ⊆ Rd, we have

P ((Z1, . . . , Zd) ∈ B) =

∫
{z;z∈A}∩{z;(z1,...,zd)∈B}

M−1 dz

= M−1
∫
B
Mf(z1, . . . , zd) dz1 · · · dzd

=

∫
B
f(z1, . . . , zd) dz1 · · · dzd,

and this is exactly what we needed to show.

The conclusion of the above theorem is that we can construct a draw
from f by drawing uniformly on an appropriate set and then drop the last
coordinate of the drawn vector. Note that the converse of the above the-
orem is also true, i.e. if we draw (z1, . . . , zd) from f and then zd+1 from
U(0,Mf(z1, . . . , zd)), (z1, . . . , zd+1) will be a draw from the uniform distri-
bution on A = {z; 0 ≤ zd+1 ≤ Mf(z1, . . . , zd)}. The question is how to
draw uniformly on A without having to draw from f (since this was our
problem in the first place); the rejection method solves this by drawing uni-
formly on a larger set B ⊃ A and rejecting the draws that end up in B\A.
A natural choice of B is B = {z; 0 ≤ zd+1 ≤ Kg(z1, . . . , zd)}, where g is
another density, the proposal density, that is easy to draw from and satisfies
Mf ≤ Kg.

Algorithm 2.2 (The Rejection Method).

1. Draw (z1, . . . , zd) from a density g that satisfies Mf ≤ Kg.

2. Draw zd+1 from U(0,Kg(z1, . . . , zd)).

3. Repeat steps 1-2 until zd+1 ≤Mf(z1, . . . , zd).

4. x = (z1, . . . , zd) can now be regarded as a draw from f .

It might seem superflous to have two constants M and G in the algorithm.
Indeed, the rejection method is usually presented with M = 1. We include
M here to illustrate the fact that you only need to know the density up to
a constant of proportionality (i.e. you know Mf but not M or f). This
situation is very common, especially in applications to Bayesian statistics.

2.3. REJECTION SAMPLING 17

The efficiency of the rejection method depends on how many points are
rejected, which in turn depends on how close Kg is to Mf . The probability
of accepting a particular draw (z1, . . . , zd) from g equals

P (Zd+1 ≤Mf(Z1, . . . , Zd))

=

∫ (∫ Mf(z1,...,zd)

0
(Kg(z1, . . . , zd))

−1 dzd+1)g(z1, . . . , zd

)
dz1 · · · dzd

=
M

K

∫
f(z1, . . . , zd) dz1 · · · dzd =

M

K
.

For large d it becomes increasingly difficult to find g and K such that M/K
is large enough for the algorithm to be useful. Hence, while the rejection
method is not strictly univariate as the inversion method, it tends to be
practically useful only for small d.

The technique is illustrated in Figure 2.3.

x

f(x
)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•
•

•

•

•

•

•
•

•

•

•
•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

••

•
•

••
•

•

•

•

•

•

•

••

•

•

•

x

f(x
)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

••

•
•

••

•

••

•

•

•

Figure 2.3: Simulation by rejection sampling from an U [0, 1] distribution
(here M = 1 and G = 1.5); the x–coordinates of the points in the right
panel constitute a sample with density f

As an example, consider the distribution with density

f(x) ∝ x2e−x; 0 ≤ x ≤ 1, (2.7)

a truncated gamma distribution. Then, since f(x) ≤ e−x everywhere, we
can set g(x) = exp(−x) and so simulate from an exponential distribution,
rejecting according to the above algorithm. Figure 2.4 shows both f(x) and
g(x). Clearly in this case the envelope is very poor so the routine is highly

18 CHAPTER 2. SIMULATING FROM SPECIFIED DISTRIBUTIONS

x

ex
p(

 -
x)

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 2.4: Scaled density and envelope

inefficient (though statistically correct). Applying this to generate a sample
of 100 data by

RS=rejsim(100)
hist(RS$sample)
RS$count

using the following code

rejsim=function(n){
x=vector("numeric",n)
m=0
for(i in 1:n)
{
acc=0
while(acc<1){
m=m+1
z1=-log(runif(1))
z2=runif(1)*exp(-z1)
if(z2<z1^2*exp(-z1)*(z1<1)){
acc=1
x[i]=z1
}

}
}
rejsim=list(sample=x,count=m)

}

2.4. CONDITIONAL METHODS 19

gave the histogram in Figure 2.5. The variable m contains the number of
random variate pairs (Z1, Z2) needed to accept 100 variables from the correct
distribution, in our simulation m=618 suggesting that the algorithm is rather
poor. What values of M and G did we use in this example?

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

rej.sim(100)

Figure 2.5: Histogram of simulated data

Exercise 2.1. Suggest and implement a more efficient method of rejection
sampling for the above truncated distribution. Compare numerical efficiency
of both the methods through a Monte Carlo study.

2.4 Conditional methods

The inversion method is strictly univariate, since the inverse F−1 is not well-
defined for functions F : Rd 7→ [0, 1] when d > 1. The rejection method is
not limited to d = 1, but for large d it becomes increasingly difficult to find a
bounding function Kg(x) that preserves a reasonably high acceptance rate.
A general technique to simulate from a multivariate distribution, using steps
of univariate draws, is suggested by a factorization argument. Any d-variate
density function f can be factorised recursively as

f(x1, . . . , xd) = f1(x1)f2(x2|x1)f3(x3|x2, x1) · · · fd(xd|xd−1, . . . , x1). (2.8)

Given the above factorisation, a draw from f can now be produced recur-
sively by

Algorithm 2.3.

20 CHAPTER 2. SIMULATING FROM SPECIFIED DISTRIBUTIONS

1. Draw x1 from the distribution with density f1(·).

2. Draw x2 from the distribution with density f2(·|x1).

3. Draw x3 from the distribution with density f3(·|x1, x2).

...

d. Draw xd from the distribution with density fd(·|x1, x2, . . . , xd−1).

(x1, . . . , xd), is now a draw from f(x1, . . . , xd) in (2.8).

In the above algorithm, each step could be performed with an univariate
method. The problem is that, commonly, the factorisation in (2.8) is not
explicitly available. For example, deriving f1 involves the integration

f1(x1) =

∫
f(x1, . . . , xd) dx2 · · · dxd,

which we might not be able to perform analytically.

Example 2.3 (Simulating a Markov Chain). Recall that a Markov Chain
is a stochastic process (X0, X1, . . . , Xn) such that, conditionally on Xi−1 =
xi−1, Xi is independent of the past (X0, . . . , Xi−2). Assuming x0 is fixed,
the factorisation (2.8) simplifies to

f(x1, . . . , xn) = f1(x1|x0)f(x2|x1) · · · f(xn|xn−1),

for a common transition density f(xi|xi−1) of Xi|Xi−1 = xi−1. Thus, to
simulate a chain starting from x0, we proceed recursively as follows

1. Draw x1 from the distribution with density f(·|x0).

2. Draw x2 from the distribution with density f(·|x1).
...

n. Draw xn from the distribution with density f(·|xn−1).
Example 2.4 (Bivariate Normals). Another application of the factorisa-
tion argument is useful when generating draws from the bivariate Normal
distribution. If

(X1, X2) ∼ N2

(
(µ1, µ2),

(
σ21 ρσ1σ2

ρσ1σ2 σ22

))
,

we obviously have that X1 ∼ N(µ1, σ
2
1) and it is a straightforward exercise

to show that X2|X1 = x1 ∼ N(µ2 + ρσ2(x1 − µ1)/σ1, σ22(1− ρ2)).
Exercise 2.2. Propose and implement the conditional method of simula-
tion for a normal vector (X1, . . . , X2) ∼ N(µ,Σ). Perform numerical com-
parison of the efficiency of your method with the one based on Cholesky’s
decompostion.

Chapter 3

Monte-Carlo integration

3.1 Generic Monte Carlo integration

Monte-Carlo integration is a numerical method for integration based on the
Law of Large Numbers (LLN). The algorithm goes as follows:

Algorithm 3.1 (Basic Monte-Carlo Integration).

1. Draw N values x1, . . . , xN independently from f .

2. Approximate τ = E(φ(X)) by

tN = t(x1, . . . , xN) =
1

N

N∑
i=1

φ(xi).

As an example of this, suppose we wish to calculate P (X < 1, Y < 1) where
(X,Y) are bivariate normal distribution with correlation 0.5 and having
standard normal distribution for marginals. This can be written as∫

1{x < 1, y < 1}f(x, y) dx dy (3.1)

where f is the bivariate normal density. Thus, provided we can simulate
from the bivariate normal, we can estimate this probability as

n−1
n∑
i=1

1{xi < 1, yi < 1} (3.2)

which is simply the proportion of simulated points falling in the set defined
by {(x, y);x < 1, y < 1}. Here we use the approach from Example 2.4 for
simulating bivariate normals. R code to achieve this is

21

22 CHAPTER 3. MONTE-CARLO INTEGRATION

bvnsim=function(n,m,s,r){
x=rnorm(n)*s[1]+m[1]
y=rnorm(n)*s[2]*sqrt(1-r^2)+m[2]+(r*s[2])/s[1]*(x-m[1])
bvnsim=matrix(0,ncol=2,nrow=n)
bvnsim[,1]=x
bvnsim[,2]=y
bvnsim

}

To obtain an estimate of the required probability on the basis of, say, 1000
simulations, we simply need

X=bvnsim(1000,c(0,0),c(1,1),.5);
mean((X[,1]<1)&(X[,2]<1))

I got the estimate 0.763 doing this. A scatterplot of the simulated values is
given in Figure 3.1.

•

•

•

•

•

•
•

•

•
•

•

•
•

•

•

••

•

•

•
•

•

•

••

• •
•

•

•
• •

•

•

•

•

•

•
•

•

•
•

•
•

•

•

•

•
•

•

•

••

•

•
•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•
••

•

•

•

•

•

•

•

•

•
•

•

• •

•
••

•
•

•
•

•

•

•

• •

•

• •
•

•

•

•

•

•

• •

•

•
•

•

•

• •

•

•

•

•

• •

•

•

•

•
•

•

•

•

•

•

•

•
••

•

•

•
•

•
•

• •

•

•

•
••

•

•

•
•

•

•

•

•

•

•

•

•

•
•

•
•

•

•
•

•

•
•

•

•
•

•

•
•

•

•

•

•

•

• ••

•

•

•

•

• •

•

•

•

•
•

•
•

•

•
•

•

•

•

•

•

•
•

•

•

••

•
•

•

•

•

•

•
•

•
•

•

•

•
•

•

•
•

• •

••

•

•

•

•

•

•
•

•

•

•

•

•

•
•

•

•

•

•

• •

•

•

•

•

•

•

••

•

•

••

•

•
•

•

•

•

•
•

•
•

•

•

•
•

•

•

•
•

•

•

•

•
• •

• •

•

•

••

•
•

•

•

•

•

•

•

•

•

•

•

• •

•

• •
•

•

•

••

•

•

•

•

•
•

•

•• •

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•
•

•

••

•

• •
•

•
•

•

••

•
•

•

•

•
• •

•

•

••

•••
•

•

•
•

••
•

•

•

•

•

•

•

•• •
•

• •

• •

•

•

•

•

•

•
•

• •

•

•
••

•

•

•

••

•
•

•

••

•

•

•
•

• •

• •

•
••

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•
•

•

•

• •

•

•

•

•
••

•

•
•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•
•

•

•
•

•

• • •

•

•

•

•

•

•

•
•

•

•

•
•

•

•• •••
•

•

•

•

•

•
•

•

•

•

•

•

••

•

•
•

•
•••

•

• ••

• • •

•

•

••
•

• •

•

•

••

•

•

•

•

••

•

•

•

•

•

•

•

•

•• ••

•

•

• •

• •

•

•

•

•• •

•

•

•• •

•
•

•

• •
••

•

•

•
•

•

•

•

•

•

•
•

•

•
•

•

••

•

••

•
•

•
•

•

••
•

•

• ••

•

•

•

•

•
•

•

•

•

•

•

•

•
•

•

•

•

•

•
•

•

•

•
•

•

••

•

•

•

•
• •

••

•

•
•

•

• •

•

•

•
••

•

•

•

•

•

•

•

•

•

•

•
•

••

•
•

•

•
•

•

•••
• •

•

•

•

•

•
•

•

•

•
•

•

•

••

•

•
•

•
•

•

•

•

•

•

•
•

•

•

•

•

•

•

••

• •

•
•

•

•

•

•

•

•

•

•
•

•

•

•
•

••

•

•
•

•

•

•

•

•

•

•

•

•

•

•
•

•
••

•
•

•

•
•

•
•

• •

••

• •

•

•

•

•

•
•••

•
•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

• ••

•
• • •

•

•

••

•

•

•

•

•

•
•

•• •

•

• •

•

•

•

•

•
•

•

•

••

• •
•

•
•

•

•

•

•

••

•

•

• •

•

•

•

•

•

•

•

•
•

•

•

•

•

•
•

•

•

•

•

•

•

•
•

•

••
•

•

•
•

•

•

•

•

••

•

•

• ••

•

•

•

•

•

•

• •
•

•

•

•
•

•
•

•

•

•

•

• •
•

•

•

•
•

•

•• •

•

•

•

•
•

•
••

•

•
•

•• •

•

•

•
• •

•

•

•

•

•

• •

•

•
•

•

• •

•

•

•

•

•

•

•

•

•

• ••

•

•
•

•
•

•
•
• •

•
•
•

•

•

•

•

••

•
••

•
•

•••

•

•

•

x

y

-3 -2 -1 0 1 2 3

-2
0

2

Figure 3.1: Simulated bivariate normals

Example 3.1. For a non-statistical example, say we want to estimate the
integral

τ =

∫ 2π

0
x sin[1/ cos(log(x+ 1))]2 dx

=

∫
(2πx sin[1/ cos(log(x+ 1))]2)(1{0 ≤ x ≤ 2π}/(2π)) dx,

where, of course, the second term of the integrand is the U [0, 2π] density
function. The integrand is plotted in Figure 3.2, and looks to be a challenge
for many numerical methods.

3.1. GENERIC MONTE CARLO INTEGRATION 23

Monte-Carlo integration in R proceeds as follows:

x=runif(10000)*2*pi
tn=mean(2*pi*x*sin(1/cos(log(x+1)))^2)
tn
[1] 8.820808

Maple, using evalf on the integral, gave 8.776170832. A larger run of the
Monte-Carlo algorithm shows that this might be an overestimate and that
the true value is close to 8.756.

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x

x
si

n(
1/

co
s(

lo
g(

x+
1)

))2

Figure 3.2: An attempt at plotting x sin(1/ cos(log(x+ 1)))2.

We suggested the motivation comes from the LLN. There are many ver-
sions of this celebrated theorem, we will provide a simple mean-square ver-
sion. First note that if X1, . . . , Xn is a sequence of random variables and
Tn = t(X1, . . . , Xn) for a function t, we say that Tn converges in the mean
square sense to a fixed value τ if

E(Tn − τ)2 → 0 as n→∞.

Theorem 3.1 (A Law of Large Numbers). Assume Z1, . . . , Zn is a sequence
of independent random variables with common means E(Zi) = τ and vari-
ances Var(Zi) = σ2. If Tn = n−1

∑n
i=1 Zi, we have

E(Tn − τ)2 =
σ2

n
→ 0 as n→∞. (3.3)

Proof. Simple and straightforward; exercise.

24 CHAPTER 3. MONTE-CARLO INTEGRATION

The above theorem tells us that with Zi = φ(Xi) where Xi are indepen-
dent with density f , the arithmetic mean of Z1, . . . , Zn converges in mean
square error to τ = E(g(X)). Moreover, it gives the precise rate of the error:

(E(Tn − τ)2)1/2 = O(n−1/2) and this rate is independent of dimension d.
This is in contrast to deterministic methods for numerical integration, like
the trapezoidal rule and Simpson’s rule, that have errors of O(n−2/d) and

O(n−4/d) respectively. Monte-Carlo integration is to be preferred in high
dimensions (greater than 4 and 8 respectively). Another advantage is that
we can reuse the drawn values x1, . . . , xN to estimate other expectations
with respect to f without much extra effort.

More precise information on the Monte-Carlo error (Tn − τ) is given by
celebrated result no. 2: the Central Limit Theorem (CLT).

Theorem 3.2 (Central Limit Theorem). Assume Z1, . . . , Zn is a sequence
of i.i.d. random variables with common means E(Zi) = τ and variances
Var(Zi) = σ2. If Tn = n−1

∑n
i=1 Zi, we have

P
(√n(Tn − τ)

σ
≤ x

)
→ Φ(x) as n→∞, (3.4)

where Φ is the distribution function of the N(0, 1) distribution.

Proof. Almost as simple, but somewhat less straightforward than LLN. Look
it up in a book.

Slightly less formally, the CLT tells us that the difference Tn − τ has,
at least for large n, approximately an N(0, σ2/n) distribution. With this
information we can approximate probabilities like P (|Tn − τ | > ε), and
perhaps more importantly find ε such that P (|Tn − τ | > ε) = 1 − α for
some specified confidence level α. To cut this discussion short, the random
interval

[Tn − 1.96σ̂/
√
n, Tn + 1.96σ̂/

√
n] (3.5)

will cover the true value τ with approximately 95% probability. Here σ̂ is
your favourite estimate of standard deviation, e.g. based on

σ̂2 =
1

n− 1

n∑
i=1

(zi − z̄)2, (3.6)

and 1.96 is roughly Φ−1(0.95), the standard Normal 95% quantile.
A similar result to the central limit theorem also holds for the median

and general sample quantiles:

Theorem 3.3. Assume Z1, . . . , Zn is a sequence of i.i.d. random variables
with distribution function F (z − τ) such that F (0) = α and that at zero F
has density f(0) > 0. Then

P (
√
Cαn(Z(dnαe) − τ) ≤ x)→ Φ(x) as n→∞, (3.7)

where Cα = α(1− α)f2(0) and Φ is the distribution function of the N(0, 1)
distribution.

3.2. BIAS AND THE DELTA METHOD 25

Exercise 3.1. Let (X1, X2, X3) have the trivariate exponential distribution
with density proportional to

exp(−x1 − 2x2 − 3x3 −max(x1, x2, x3)), xi > 0, i = 1, . . . , 3.

Construct an algorithm that draws from (X1, X2, X3) using the rejection
method, proposing a suitable vector of independent exponentials.

Use basic Monte-Carlo integration to produce an approximate 95% ac-
curacy interval for the probability P (X2

1 +X2
2 ≤ 2).

Exercise 3.2. Let π(k) be the number of primes less than k. How can
you approximate π(109) without having to check all integers less than 109?
You could use the famous prime-number theorem, which says that π(k) ≈
k/ log(k) for large k. See the following Wikipedia link for more details on
historical and mathematical aspects of this result: Prime Number Theorem.
We will not this “deterministic result”. Instead, let X be uniformly dis-
tributed on the odd numbers {1, 3, . . . , 109 − 1} (but remember that 2 is also
a prime). Let ψ be an indicator of a prime number, i.e. it is a function that
takes value one if its argument is prime and zero otherwise.

Find the (simple) relation between the expected value E(ψ(X)) and π(109).
Then use Monte-Carlo method to approximate π(109) by sampling X1, . . . , Xn

from X averaging ψ(Xi), i = 1, . . . , n. By what a result in probability theory
averaging approximates the expected value of E(ψ(X)). You might find R
package ‘primes’ with its is_prime function useful here. Provide with the
error assessment. Compare your result with the prime-number theorem.

3.2 Bias and the Delta method

It is not always the case that we can find a random variable Tn such that
E(Tn) = τ . For example we might be interested in τ = h(E(X)) for some
specified smooth function h. If X̄ again is the arithmetic mean, then a
natural choice is Tn = h(X̄). However, unless h is linear, E(Tn) is not
guaranteed to equal τ . This calls for a definition: the bias of t (when viewed
as an estimator of τ), Tn = t(X1, . . . , Xn) is

Bias(t) = E(Tn)− τ. (3.8)

The concept of bias allows us to more fully appreciate the concept of mean
square error, since

E(Tn − τ)2 = Var(Tn) + Bias2(t), (3.9)

(show this as an exercise). The mean square error equals variance plus
squared bias. In the above mentioned example, a Taylor expansion gives an
impression of the size of the bias. Roughly we have with µ = E(X)

E(Tn − τ) = E[h(X̄)− h(µ)]

≈ E(X̄ − µ)h′(µ) +
E(X̄ − µ)2

2
h′′(µ)

=
Var(X)

2n
h′′(µ). (3.10)

http://en.wikipedia.org/wiki/Prime_number_theorem
https://cran.r-project.org/web/packages/primes/primes.pdf

26 CHAPTER 3. MONTE-CARLO INTEGRATION

And it is reassuring that (3.10) suggests a small bias when sample size n
is large. Moreover, since variance of Tn generally is of order O(n−1) it
will dominate the O(n−2) squared bias in (3.9) suggesting that bias is a
small problem here (though it can be a serious problem if the above Taylor
expansions are not valid).

We now turn to the variance of Tn. First note that while Var(X̄) is easily
estimated by e.g. (3.6), estimating Var(h(X̄)) is not so straightforward. An
useful result along this line is the Delta Method

Theorem 3.4 (The Delta method). Let rn be an increasing sequence and
Sn a sequence of random variables. If there is µ such that h is differentiable
at µ and

P (rn(Sn − µ) ≤ x)→ F (x), as n→∞

for a distribution function F , then

P (rn(h(Sn)− h(µ)) ≤ x)→ F (x/|h′(µ)|).

Proof. Similar to the Taylor expansion argument in (3.10).

This theorem suggests that if Sn = X̄ has variance σ2/rn, then the vari-
ance of Tn = h(Sn) will be approximately σ2h′(µ)2/rn for large n. Moreover,
if Sn is asymptotically normal, so is Tn.

Exercise 3.3. Implement Monte Carlo evaluation of integral

I =

∫ 2π

0
x2|sinx|ex cos

3/2 xdx.

Analyze the error of your evaluation. Suppose that one is interested in
the accuracy of I−2 from the obtained approximation of I. Apply the delta
method to assess this accuracy.

3.3 Variance reduction by rejection sampling

The method based on uniform sampling is simple but also not very inteligent.
After all uniform distribution contains no information about the function at
integral of which we aim. Through uniform samples we sometimes sample
over regions were values of the function that do contribute much to the value
of the integral but equally often (uniformly) we sample over regions where
this is not true. Due to this we have large variability in the approximations
– large variance. One can try to reduce this variability by being smarter,
i.e. by utilizing some information about the function. In fact one method of
achieving it can utilize rejection sampling algorithm that was discussed as
a method of sampling from a distribution. There we were approximating a
shape of the density (up to the normalizing constant) by the shape of a pro-
posal density from which we could sample. The fact that the method worked
without necessity of knowing the normalizing constants can be utilized here.

3.4. VARIANCE REDUCTION BY IMPORTANCE SAMPLING 27

Consider a known density f(x) on (a, b) from which one can simulate
samples. Let us assume that φ(x) > 0 is a function on (a, b) from which
an integral is supposed to be approximated. Let a constant K be such
that φ(x) ≤ Kf(x). Consider 0-1 random variables Xi indicating if the ith
attempt in rejection sampling is rejected or accepted. Then

P (Xi = 1) =

∫ b
a φ(x) dx

K
.

Since Xi are iid thus by the LLN

În = KX̄ ≈
∫ b

a
φ(x) dx.

One can easily see that the variance of the method is given by

V ar(În) = K2

∫ b
a φ(x) dx

K

(
1−

∫ b
a φ(x) dx

K

)
/n =

∫ b

a
φ(x) dx

(
K −

∫ b

a
φ(x) dx

)
/n.

Thus if K is close to
∫ b
a φ(x) dx the variance can be small.

Exercise 3.4. Consider a distribution on [0, π] given by the cdf

F (u) =
1− e−u2/2
1− eπ2/2

.

The simulation from this distribution is easily achieved by inverting the cdf.
One can use the discussed method to evaluate the integral of

φ(x) = x
√

sinxe−x
2
, x ∈ [0, π].

Perform the analysis comparing variance of the method with the variance
of the method based on uniform sampling over the interval [0, π].

The idea of variance reduction that is evident in our rejection algorithm
is further explored by a similar but slightly more advanced and more popular
method that is discussed next.

3.4 Variance reduction by importance sampling

Importance sampling is a technique that might substantially decrease the
variance of the Monte-Carlo error. It can also be used as a tool for estimating
E(φ(X)) in cases where X can not be sampled easily.

We want to calculate

τ =

∫
φ(x)f(x)dx (3.11)

28 CHAPTER 3. MONTE-CARLO INTEGRATION

which can be re–written

τ =

∫
ψ(x)g(x)dx (3.12)

where ψ(x) = φ(x)f(x)/g(x). Hence, if we obtain a sample x1, x2, . . . , xn
from the distribution of g, then we can estimate the integral by the unbiased
estimator

tn = n−1
n∑
i=1

ψ(xi), (3.13)

for which the variance is

Var(Tn) = n−1
∫
{ψ(x)− τ}2g(x)dx. (3.14)

This variance can be very low, much lower than the variance of an esti-
mate based on draws from f , provided g can be chosen so as to make ψ
nearly constant. Essentially what is happening is that the simulations are
being concentrated in the areas where there is greatest variation in the in-
tegrand, so that the informativeness of each simulated value is greatest.
Another important advantage of importance sampling comes in problems
where drawing from f is difficult. Here draws from f can be replaced by
draws from an almost arbitrary density g (though it is essential that φf/g
remain bounded).

This example illustrates the idea. Suppose we want to estimate the
probability P (X > 2), where X follows a Cauchy distribution with density
function

f(x) =
1

π(1 + x2)
(3.15)

so we require the integral ∫
1{x > 2}f(x)dx. (3.16)

We could simulate from the Cauchy directly and apply basic Monte-Carlo
integration, but the variance of this estimator is substantial. As with the
bivariate Normal example, the estimator is the empirical proportion of ex-
ceedances; exceedances are rare, so the variance is large compared to its
mean. Put differently, we are spending most of our simulation budget on
estimating the integral of 1{x > 2}f(x) over an area (i.e. around the origin)
where we know it equals zero.

Alternatively, we observe that for large x, f(x) is similar in behaviour
to the density g(x) = 2/x2 on x > 2. By inversion, we can simulate from g
by letting xi = 2/ui where ui ∼ U [0, 1]. Thus, our estimator becomes:

tn = n−1
n∑
i=1

x2i
2π(1 + x2i)

, (3.17)

where xi = 2/ui. Implementing this with the R-function

3.4. VARIANCE REDUCTION BY IMPORTANCE SAMPLING 29

impsamp=function(n){
x=2/runif(n)
psi=x^2/(2*pi*(1+x^2))
tn=mean(psi)
cum=cumsum(psi)/seq(1,n,by=1)
impsamp=list(tn=tn,cum=cum)

}

and processing

is=impsamp(1000);
plot(is$cum, type=’l’)\

Matlab function

function [tn,cum]=impsamp(n);
x=2./rand(1,n);
psi=x.^2./(2*pi*(1+x.^2));
tn=mean(psi);
cum=cumsum(psi)./(1:n);

and processing

[tn,cum]=impsamp(1000);
plot(cum)

gave the estimate tn = .1478. The exact value is .5− π−1 tan 2 = .1476.
In Figure 3.3 the convergence of this sample mean to the true value is demon-
strated as a function of n by plotting the additional output vector cum.

For comparison, in Figure 3.4, we show how this compares with a se-
quence of estimators based on the sample mean when simulating directly
from a Cauchy distribution. Clearly, the reduction in variability is substan-
tial (the importance sampled estimator looks like a straight line).

3.4.1 Unknown constant of proportionality

To be able to use the above importance sampling techniques, we need to
know f(x) explicitly. Just knowing Mf for an unknown constant of pro-
portionality M is not sufficient. However, importance sampling can also be
used to approximate M . Note that,

M =

∫
Mf(x) dx =

∫
Mf(x)

g2(x)
g2(x) dx, (3.18)

for a density g2. Thus, based on a sample x1, x2, . . . , xN from g2, we can
approximate M by

tN =
1

N

N∑
i=1

Mf(xi)

g2(xi)
. (3.19)

30 CHAPTER 3. MONTE-CARLO INTEGRATION

n

p

0 200 400 600 800 1000

0.
14
6

0.
14
8

0.
15
0

0.
15
2

0.
15
4

Figure 3.3: Convergence of importance sampled mean

n

p

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 3.4: Comparison of importance sampled mean with standard esti-
mator

3.4. VARIANCE REDUCTION BY IMPORTANCE SAMPLING 31

It should be noted that this approximation puts some restrictions on the
choice of g2. To have a finite variance, we need (with X ′ ∼ g2)

E

(
(Mf(X ′))2

g2(X ′)2

)
=

∫
(Mf(x))2

g2(x)
dx,

to be finite, i.e. f2/g2 is integrable. Hence, a natural requirement is that
f/g2 is bounded. This can now be used to approximate τ = E(φ(X)) using
sequences x1, x2, . . . , xN from g2 and y1, y2, . . . , yN from g through

t′N
tN

=

(
N∑
i=1

φ(yi)Mf(yi)

g(yi)

)/(N∑
i=1

Mf(xi)

g2(xi)

)
, (3.20)

where the numerator approximates Mτ and denominator M . Of course we
could use g = g2 and xi = yi in (3.20), but this is not usually the most
efficient choice.

32 CHAPTER 3. MONTE-CARLO INTEGRATION

Chapter 4

Markov Chain Monte-Carlo

Today, the most-used method for simulating from complicated and/or high-
dimensional distributions is Markov Chain Monte Carlo (MCMC). The basic
idea of MCMC is to construct a Markov Chain that has f as stationary
distribution, where f is the distribution we want to simulate from. In this
chapter we introduce the algorithms, more applications will be given later.

4.1 Markov chains - basic concepts

The sequences of random values, say Xn’s, that we have obtained so far
were obtained by independent sampling from a certain distribution. In our
context this type of sampling was referred to as Monte Carlo sampling. The
simplest but important case of this was a sequence of independent Bernoulli
variables that models a random flip of a not necessarily symmetric coin.
The limiting results of probability theory such as the law of large numbers
or the central limit theorem have been used to establish some fundamental
asymptotic properties (approximation errors) of the Monte Carlo method.
Markov chains can be viewed as simplest models for obtained sequence of
random observations that does not involve direct independent samples. The
dependence in a sequence of experiments affecting the next value is only
through the most recent value. Simplest Markov chains are those that takes
values in a discrete (finite or countable) state-space.

More specifically, we take a sequence Xn’s such that the distribution of
Xn+1 given that we obtained Xn = x(n), . . . , X0 = x(0) depends only on the
value x(n) and not on x(i)’s for i < n. The transition probabilities from the
state i to j are given by

q(j|i) = P (Xn+1 = j|Xn = i).

They together with the initial distribution distribution X0 given by π(i) =
P (Xn = i) on the states i’s fully described distributions of the model.

Example 4.1. For a simple example of a Markov chain, let us consider
a simple case of three states -1,0,1 and the following matrix P = (pij)

33

34 CHAPTER 4. MARKOV CHAIN MONTE-CARLO

representing the transition probabilities pij = qj|i

P =

 1− 2p 2p 0
p 1− 2p p
0 2p 1− 2p

 .
The following program simulates from this Markov chain that start from a
state x0.

SMC=function(n,p,x0){
x=vector("numeric",n)
x[1]=x0
for(i in 2:n)

{
z=rmultinom(1,1,prob=c(p,1-2*p,p))
if(x[i-1]==0){
x[i]=z[1,1]-z[3,1]

}else{
if(x[i-1]==1){

x[i]=x[i-1]-z[1,1]-z[3,1]
}else{

x[i]=x[i-1]+z[1,1]+z[3,1]
}

}
}
SMC=x

}

An example of sample can be obtained by running

n=100
p=1/4
x0=0
x=SMC(n,p,0)
plot(x)

and is shown in Figure 4.1 Left.

The theory of Markov chains demonstrates that much of asymptotics
observed for independent samples are still valid for Markov chains. For
example, in Figure 4.1 Right it is observed that a sort of law of large numbers
should be valid for the Markov chain in hand as the asymptotic frequency
of observing the state ”1” is evidently converging. One can utilize the above
program to observe the asymptotics

n=2000
p=1/4
x=SMC(n,p,1)
P1=cumsum(x==1)/cumsum(rep(1,n))
plot(P1,type=’l’)

4.1. MARKOV CHAINS - BASIC CONCEPTS 35

●●

●

●

●

●●

●●

●

●

●●

●●

●●

●

●

●●●

●

●

●

●

●●●

●●

●

●●●●

●

●●●

●●●

●

●●

●

●

●●

●●●

●●

●●

●●●●●

●●

●●●

●

●●

●●

●●

●●●

●●

●

●●●●

●●

●●●●

●

●●●

●●●

●

●

●

0 20 40 60 80 100

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Index

x

0 500 1000 1500 2000

0.
2

0.
4

0.
6

0.
8

1.
0

Index

P
1

Figure 4.1: A simple 3-state Markov chain. Left: a trajectory of size 100
starting from x(0) = 0, Right: asymptotic frequency of state ”1” based on
several trajectories of size 2000.

Markov Chains for which the law of large numbers holds are called ergodic.

Exercise 4.1. Using the provided example of a Markov chain, make some
claims about asymptotical values of the frequencies of states and provided
with analysis of error of your claims based on Monte Carlo study.

Markov Chains can serve often as simple models of real phenomena oc-
curring in time. The following exercise can lead the reader through an
attempt to model weather in her/his town. For this one needs a definition
of a stationary state.

Definition 4.1. A distribution π0 on the state space is called stationary if
the process starting from that distribution remains in this distribution over
the entire time, or more technically the row vector of probabilities given by
π0 satisfies the equation

π0P = π0.

Exercise 4.2. Consider the following simplistic model for certain aspect of
the weather that assumes the lack of memory property, i.e. that cloudeness
and rain depends only on the next day depends only on what it was on the
previous day. We consider five states: sunny (S) or partly sunny (P), cloudy
(C), rainy (R), heavy rain (H). Because of the lack of memory property,
this weather model is fully described by providing the matrix of transition
probabilities, that describe what are chances for tomorrow to be in one of the
five states under the conditions that today we observe one of these states.

1. Propose the values of the transition probabilities for summer weather
in your town (use your own judgement, not necessarily scientific evi-
dence).

36 CHAPTER 4. MARKOV CHAIN MONTE-CARLO

2. Using the proposed values generate a 90 days long trajectory of weather
pattern.

3. Based on your sample estimate the probabilities that on a randomly
chosen day in summer the weather will be in one of its five states.

4. Check if your estimated values of probabilities satisfies the stationary
state equation for the proposed Markov process.

5. Compare the estimated values with the evaluated theoretical values for
the stationary state (the latter can be found by solving a proper linear
equation).

It should be remembered that not always a Markov chain leads to the
asymptotics observed for independent sampling and the conditions for this
have to be examined. An interested reader can do the following exercise to
see possible problems.

Exercise 4.3 (Random Walk). Consider a Markov Chain with infinite but
discrete state space

Z = {. . . ,−2,−1, 0, 1, 2, . . . }

and with transition probabilities given by

pij =


p : j = i+ 1;

1− p− q : j = i;
q : j = i− 1;
0 : otherwise

Generate sample paths of such a Markov chain. By analyzing sample paths,
discuss if such a Markov chain is ergodic.

4.2 Markov chains with continuous state-space

The theory for Markov chains that take values in a continuous state-space
is complex. Much more so than the theory for finite/countable state-spaces,
that you might have already been exposed to. We will here not pretend to
give a full account of the underlying theory, but be happy with formulating
a number of sufficient conditions under which the methods work. Links to
more advanced material will be provided on the course web-page.

In this chapter, we will consider Markov-Chains X1, X2, . . . , XN defined
through a starting value x0 and a transition density q̃. The transition density
xi 7→ q̃(xi−1, xi) = g(xi|xi−1) is the density of Xi|Xi−1 = xi−1, and this
determines the evolution of the Markov-chain across the state-space. We
would ideally like to draw the starting value x0 and choose q̃ in such a way
that the following realisations x1, x2, . . . , xN are independent draws from
f , but this is a too ambitious task in general. In contrast to the previous
chapter, here our draws will neither be independent nor exactly distributed

4.3. MARKOV CHAIN MONTE-CARLO INTEGRATION 37

according to f . What we will require is that f is the asymptotic distribution
of the chain, i.e. if Xi takes values in X ,

P (Xn ∈ A)→
∫
A
f(x) dx, (4.1)

as n → ∞, for all subsets A of X and independently of the starting value
x0 ∈ X .

A condition on the transition density that ensures the Markov chain has
a stationary distribution f , is that it satisfies the global balance condition

f(y)q̃(y, x) = f(x)q̃(x, y). (4.2)

Exercise 4.4. Check that (4.2) results in a stationary distribution, i.e. if
f satisfies it then

f(y) =

∫
f(x)q̃(x, y)dx.

This says roughly that the flow of probability mass is equal in both
directions (i.e. from x to y and vice versa). Global balance is not sufficient
for the stationary distribution to be unique (hence the Markov chain might
converge to a different stationary distribution). Sufficient conditions for
uniqueness are irreducibility and aperiodicity of the chain, a simple sufficient
condition for this is that the support of f(y) is contained in the support of
y 7→ q̃(x, y) for all x (minimal necessary conditions for q̃ to satisfy (4.1)
are not known in general, however our sufficient conditions are far from the
weakest known in literature).

4.3 Markov chain Monte-Carlo integration

Before going into the details of how to construct a Markov chain with spec-
ified asymptotic distribution, we will look at Monte-Carlo integration un-
der the new assumption that draws are neither independent not exactly
from the target distribution. Along this line, we need a Central Limit
Theorem for Markov chains. First we observe that if X1, X2, . . . , Xn is a
Markov chain on Rd and φ : Rd 7→ R, then with Zi = φ(Xi), the se-
quence Z1, Z2, . . . , Zn forms a Markov chain on R. As before, we want to
approximate τ = E(Z) = E(φ(X)) by tN = N−1

∑N
i=1 z

(i), for a sequence

z(i) = φ(x(i)) of draws from the chain.

4.3.1 Burn-in

An immediate concern is that, unless we can produce a single starting value
x0 with the correct distribution, our sampled random variables will only
asymptotically have the correct distribution. This will induce a bias in our
estimate of τ .

In general, given some starting value x(0), there will be iterations x(i),
i = 1, . . . , k, before the distribution of x(i) can be regarded as “sufficiently
close” to the stationary distribution f(x) in order to be useful for further

38 CHAPTER 4. MARKOV CHAIN MONTE-CARLO

analysis (i.e. the value of x(i) is still strongly influenced by the choice of x(0)

when i ≤ k). The values x(0), . . . , x(k) are then referred to as the burn-in of
the chain, and they are usually discarded in the subsequent output analysis.

For example when estimating
∫
φ(x)f(x) dx, it is common to use

1

N − k

N∑
i=k+1

φ(x(i)).

An illustration is given in Figure 4.2. We now provide the CLT for Markov

0 50 100 150 200 250 300 350 400
−25

−20

−15

−10

−5

0

5

iteration

x

Figure 4.2: A Markov chain starting from x(0) = −20 that seems to have
reached its stationary distribution after roughly 70 iterations

Chains.

Theorem 4.1. Suppose a geometrically ergodic Markov chain Xi, i =
1, . . . , n, on Rd with stationary distribution f and a real-valued function
φ : Rd 7→ R satisfies E(φ2+ε(X)) ≤ ∞ for some ε > 0, then with τ =
E(φ(X)) and Tn = n−1

∑n
i=1 φ(Xi)

P
(√n(Tn − τ)

σ
≤ x

)
→ Φ(x) (4.3)

where Φ is the distribution function of the N(0, 1) distribution and

σ2 = r(0) + 2

∞∑
i=1

r(i) (4.4)

where r(i) = limk→∞Cov{φ(Xk), φ(Xk+i)}, the covariance function of a
stationary version of the chain.

4.3. MARKOV CHAIN MONTE-CARLO INTEGRATION 39

Note that the above holds for an arbitrary starting value x0. The error
due to “wrong” starting value, i.e. the bias E(Tn)− τ , is of O(n−1). Hence
squared bias is dominated by variance, and asymptotically negligible. This
does not suggest that it is unnecessary to discard burn-in, but rather that
it is unnecessary to put too much effort into deciding on how long it should
be. A visual inspection usually suffices.

4.3.2 After burn-in

If we manage to simulate our starting value x(0) from the target distribution
f , all subsequent values will also have the correct distribution. Would our
problems then be solved if we were given that single magic starting value
with the correct distribution? As the above discussion suggests, the answer
is no. The “big problem” of MCMC is that (4.4) can be very large, especially
in problems where the dimension d is large. It is important to understand
that converging to the stationary distribution (or getting close enough) is
just the very beginning of the analysis. After that we need to do sufficiently
many iterations in order for the variance σ2/n of Tn to be small.

It is actually a good idea to choose starting values x(0) that are far away
from the main support of the distribution. If the chain then takes a long
time to stabilize you can expect that even after reaching stationarity, the
autocorrelation of the chain will be high and σ2 in (4.4) large. Here we
give a rough guide for estimating σ2, which is needed want we to produce a
confidence interval:

1. We assume your draws x(i), i = 1, . . . , N are d-variate vectors. First
make a visual inspection of each of the d trajectories, and decide a
burn-in 1, . . . , k where all of them seems to have reached stationarity.
Throw away the first k sample vectors.

2. Now you want to estimate E(φ(X)). Compute zi = φ(x(i+k)), i =
1, . . . , N−k and estimate the autocorrelation function of the sequence
zi, i.e. the function ρ(t) = Corr(Z1, Zt) over a range of values t =
1, . . . , L, this can be done with R-function acf (though it uses the
range −L, . . . , L). A reasonable choice of L is around (N − k)/50
(estimates of ρ(L) tends to be too unreliable for larger values). If the
estimated autocorrelation function does not reach zero in the range
1, . . . , L, go back to the first step and choose a larger value for N .

3. Divide your sample into m batches of size l, ml = N−k. Here l should
be much larger than the time it took for the autocorrelation to reach
zero in the previous step. The batches are (z1, . . . , zl),(zl+1, . . . , z2l),
. . ., (zm(l−l)+1, . . . , zml). Now compute the arithmetic mean z̄j of each
batch, j = 1, . . . ,m. Estimate τ by the mean of the batch means and
σ2 by s2/m, where s2 is the empirical variance of the batch means.

This procedure is based on the fact that if batches are sufficiently large,
their arithmetic means should be approximately uncorrelated. Hence, since
our estimate is the mean of m approximately independent batch means it
should have variance σ2b/m, where σ2b is the variance of a batch mean.

We now turn to the actual construction of the Markov chains.

40 CHAPTER 4. MARKOV CHAIN MONTE-CARLO

4.4 Two continuous time Markov chain models

4.4.1 Autoregressive model

Probably, the simplest continuous state is an autoregressive time series Xn

that is given by

Xn+1 = ρXn + εn,

where εn are iid normal random variables with the mean zero and variance
σ2. One can easily argue that this is a Markov chain. Derivation of the
transition densities is left for the reader, who can also study the model
through simulations as suggested in the following exercise.

Exercise 4.5. Program a simulator of the autoregressive model.

• By its means simulate trajectories of from such a model and consider
for which values of the parameter ρ the model is stable.

• Using autocorrelation facilities of R approximate the autocorrelation
function of Xn as well as its variance.

• Illustrate the central limit theorem that have been discussed in Theo-
rem 4.1.

• Illustrate the burn in sample for this model.

• For the autoregressive model perform analysis suggested in 1.-3. in
Subsection 4.3.2.

4.4.2 Modeling cloud coverage

Daily cloud coverage is an important characteristics in weather studies. It
can be expressed in the percentage of sunlight passing through the clouds
relatively to the amount recorded when the sky is completely clear. Modeling
such a process is extension of the simple model of Exercise 4.2. For modeling
percentages the beta distribution is a natural family of distributions. The
densities of this distributions are given up to a proportionality constant by

f(x;α, β) ∼ xα−1(1− x)β−1, x ∈ [0, 1].

We leave to the reader to develop a Markov model that would model cloud
coverage using continuous state space and beta distributions in the spirit of
Exercise 4.2 and Example 4.1

Exercise 4.6. Propose a Markov chain approach to modeling cloud cover-
age using beta distributions. For the model develop programs and study its
stability and asymptotic behavior.

4.5. THE METROPOLIS-HASTINGS ALGORITHM 41

4.5 The Metropolis-Hastings algorithm

How do you choose transition density q̃ in order to satisfy (4.1)? The idea
behind the Metropolis-Hastings algorithm is to start with an (almost) arbi-
trary transition density q. This density will not give the correct asymptotic
distribution f , but we could try to repair this by rejecting some of the moves
it proposes. Thus, we construct a new transition density q̃ defined by

q̃(x, y) = α(x, y)q(x, y) + (1− α(x, y))δx(y), (4.5)

where δx(y) is a point-mass at x. This implies that we stay at the level x if
the proposed value is rejected and we reject a proposal y∗ with probability
1− α(x, y∗). Simulating from the density y 7→ q̃(x, y) works as follows

1. Draw y∗ from q(x, ·).

2. Draw u from U(0, 1).

3. If u < α(x, y∗) set y = y∗,
else set y = x.

We now have to match our proposal density q with a suitable acceptance
probability α. The choice of the Metropolis-Hastings algorithm, based on
satisfying the global balance equation (4.2), is

α(x, y) = min(1,
f(y)q(y, x)

f(x)q(x, y)
), (4.6)

you might want to check that this actually satisfies (4.2).

Algorithm 4.1 (The Metropolis-Hastings algorithm).

1. Choose a starting value x(0).

2. Repeat for i = 1, . . . , N :

i.1 Draw y∗ from q(x(i−1), ·).
i.2 Draw u from U(0, 1).

i.3 If u < α(x(i−1), y∗) set x(i) = y∗, else set x(i) = x(i−1).

3. x(1), x(2), . . . , x(N) is now a sequence of dependent draws, approx-
imately from f .

There are three general types of Metropolis-Hastings candidate gener-
ating densities q used in practise; the Gibbs sampler, independence sampler
and the random walk sampler. Below we will discuss their relative merits
and problems.

42 CHAPTER 4. MARKOV CHAIN MONTE-CARLO

Exercise 4.7. The goal is to evaluate the integral
∫∞
0

x log x
1+x e

−
√
x−x dx by

implementing Metropolis-Hastings algorithm. Consider the transition den-
sities given by q(x, y) = y

x2
e−y/x.

1. Implement the Metropolis-Hastings algorithm using the above transi-
tion densities to generate a Markov chain with the stationary distribu-
tion proportional to the absolute value of the integrand.

2. Run this algorithm until you observe 1000 observations after the burn-
in period of the algorithm.

3. Use the obtained samples to estimate the integral in question.

4.6 The Gibbs-sampler

The Gibbs-sampler is often viewed as a separate algorithm rather than a
special case of the Metropolis-Hastings algorithm. It is based on partitioning
the vector state-space Rd = Rd1×· · ·Rdm into blocks of sizes di, i = 1, . . . ,m
such that d1 + · · ·+ dm = d. We will write z = (z1, . . . , zm) = (x1, . . . , xd),
where zi ∈ Rdi (e.g. z1 = (x1, . . . , xd1). With this partition, the Gibbs-
sampler with target f is now:

Algorithm 4.2 (The Gibbs-sampler).

1. Choose a starting value z(0).

2. Repeat for i = 1, . . . , N :

i.1 Draw z
(i)
1 from f(z1|z(i−1)2 , . . . , z

(i−1)
m).

i.2 Draw z
(i)
2 from f(z2|z(i)1 , z

(i−1)
3 , . . . , z

(i−1)
m).

i.3 Draw z
(i)
3 from f(z3|z(i)1 , z

(i)
2 , z

(i−1)
4 , . . . , z

(i−1)
m).

...

i.m Draw z
(i)
m from f(zm|z(i)1 , z

(i)
2 , . . . , z

(i)
m−1).

3. z(1), z(2), . . . z(N), is now a sequence of dependent draws approxi-
mately from f .

This corresponds to an MH-algorithm with a particular proposal density
and α = 1. What is the proposal density q?

Note the similarity with Algorithm 2.3. The difference is that here we
draw each zi conditionally on all the others which is easier since these con-
ditional distributions are much easier to derive. For example,

z1 7→ f(z1|z2, . . . , zm) =
f(z1, . . . , zm)

f(z2, . . . , zm)
∝ f(z1, . . . , zm).

4.6. THE GIBBS-SAMPLER 43

Hence, if we know f(z1, . . . , zm), we also know all the conditionals needed
(up to a constant of proportionality). The Gibbs-sampler is the most popular
MCMC algorithm and given a suitable choice of partition of the state-space
it works well for most applications to Bayesian statistics. We will have the
opportunity to study it more closely in action in the subsequent part on
Bayesian statistics of this course. Poor performance occurs when there is
a high dependence between the components Zi. This is due to the fact
that the Gibbs-sampler only moves along the coordinate axes of the vector
(z1, . . . , zm), illustrated by Figure 4.3. One remedy to this problem is to
merge the dependent components into a single larger component, but this
is not always practical.

Figure 4.3: For a target (dashed) with strongly dependent components the
Gibbs sampler will move slowly across the support since “big jumps”, like
the dashed move, would involve first simulating a highly unlikely value from
f(z1|z2).

Example 4.2 (Bivariate Normals). Bivariate Normals can be drawn with
the methods of Examples 2.4 or 2.2. Here we will use the Gibbs-sampler
instead. We want to draw from

(X1, X2) ∼ N2

(
0,

(
1 ρ
ρ 1

))
,

and choose partition (X1, X2) = (Z1, Z2). The conditional distributions are
given by

Z1|Z2 = z2 ∼ N(ρz2,
√

1− ρ2) and Z2|Z1 = z1 ∼ N(ρz1,
√

1− ρ2).

The following script draws 1000 values starting from (z
(0)
1 , z

(0)
2) = (0, 0).

44 CHAPTER 4. MARKOV CHAIN MONTE-CARLO

bivngibbs=function(rho,n){
z=matrix(0,nrow=n+1,ncol=2)

for(i in 2:n+1)
{
z[i,1]=rnorm(1)*sqrt(1-rho^2)+rho*z[i-1,2]
z[i,2]=rnorm(1)*sqrt(1-rho^2)+rho*z[i-1,1]

}
bivngibbs=z[2:(n+1),]

}

rho=0.9
n=1000
Z=bivngibbs(rho,n)

quartz()
par(mfrow=c(2,1))
plot(Z[,1],type=’l’)
plot(Z[,2],col=’red’,type=’l’)

In Figure 4.4 we have plotted the output for ρ = 0.5 and ρ = 0.99. Note
the strong dependence between successive draws when ρ = 0.99. Also note
that each individual panel constitute approximate draws from the same dis-
tribution, i.e. the N(0, 1) distribution.

0 200 400 600 800 1000
−4

−2

0

2

4

z
1

0 200 400 600 800 1000
−4

−2

0

2

4

iteration

0 200 400 600 800 1000
−4

−2

0

2

4

z
1

0 200 400 600 800 1000
−4

−2

0

2

4

z
2

iteration

Figure 4.4: Gibbs-draws from Example 4.2, left with ρ = 0.5 and right with
ρ = 0.99.

Exercise 4.8. The above Gibbs sampler of normal distribution extends eas-
ily to higher dimensions. The advantage of it over previous methods of sim-
ulation is that one does not have to invert covariance matrices which maybe
very beneficial for highly dimensional problems. Extend the algorithm to ar-
bitrary number of dimensions and test the extension on an example in five
dimensions. Plot estimates of variances and covariances over the iterations
of the algorithm vs. their true values and explain how these plots can be used
to determine the burn-in sample size.

4.7. INDEPENDENCE PROPOSAL 45

4.7 Independence proposal

The independence proposal amounts to proposing a candidate value y∗ in-
dependently of the current position of the Markov Chain, i.e. we choose
q(x, y) = q(y). A necessary requirement here is that supp(f) ⊆ supp(q); if
this is not satisfied, some parts of the support of f will never be reached.
This candidate is then accepted with probability

α(x, y∗) =

{
min{f(y

∗)q(x)
f(x)q(y∗) , 1} if f(x)q(y∗) > 0

1 if f(x)q(y∗) = 0

And we immediately see that if q(y) = f(y), α(x, y) ≡ 1, i.e. all candidates
are accepted. Of course, if we really could simulate a candidate directly
from q(y) = f(y) we would not have bothered about implementing an MH
algorithm in the first place. Still, this fact suggests that we should attempt
to find a candidate generating density q(y) that is as good an approximation
to f(y) as possible, similarily to the rejection sampling algorithm. The main
difference is that we don’t need to worry about deriving constants M or K
such that Mf < Kq when we do independence sampling. To ensure good
performance of the sampler it is advisable to ensure that such constants
exists, though we do not need to derive it explicitly. If it does not exist, the
algorithm will have problems reaching parts of the target support, typically
the extreme tail of the target. This is best illustrated with an example;
assume we want to simulate from f(x) ∝ 1/(1 + x)3 using an Exp(1) MH
independence proposal. A plot of (unnormalised) densities q and 1/(1 + x)3

in Figure 4.5 does not indicate any problems — the main support of the two
densities seem similar. The algorithm is implemented as follows

indsamp=function(m,x0){
x=vector(’numeric’,m)
x[1]=x0
acc=0
for(i in 1:m)
{
y=rexp(1)
a=((y+1)^(-3))*dexp(x[i])/dexp(y)/(x[i]+1)^(-3)
a=min(a,1)

u=runif(1)
if(u<a){
x[i+1]=y
acc=acc+1

}else{
x[i+1]=x[i]

}
}
indsamp=list(acc=acc,x=x)

}

46 CHAPTER 4. MARKOV CHAIN MONTE-CARLO

x0=1
m=1000
IS=indsamp(m,x0)
IS$acc

and 1000 simulated values are shown in the left panel of Figure 4.6 with
starting value x0=1. Looking at the output does not immediately indicate
any problems either. However, a second run, now with starting value x0=15,
is shown in the right panel of the same figure; 715 proposed moves away from
the tail are rejected.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.5: Unnormalized target 1/(1 + x)3 (dashed) and Exp(1) indepen-
dence proposal (solid).

The problem here is that since the light-tailed proposal density generates
large values too seldom, the chain needs to stay in the tail for a very long time
once it gets there to preserve stationarity. As a consequence this induces
large autocorrelation which reduces the information contained in the output.

The main problem with the independence sampler is that unless q is a
good approximation of f (and especially so in high dimensional problems),
most proposals will be rejected and as a consequence autocorrelations high.

4.8 Random walk proposal

While the independence sampler needs careful consideration when choos-
ing a candidate generating kernel q, random walk kernels are more “black
box”. As a drawback they will never be quite as efficient as a finely tuned
independence proposal.

4.8. RANDOM WALK PROPOSAL 47

0 200 400 600 800 1000
0

2

4

6

8

10

12

14

16

0 200 400 600 800 1000
0

2

4

6

8

10

12

14

16

Figure 4.6: Output from independence sampler. Left with small starting
value and right starting from the tail.

Random walk proposals are characterised by q(x, y) = g(|x−y|), i.e. they
are symmetric centered around the current value, and as a consequence α
simplifies to

α(x, y) = min{f(y)/f(x), 1}.

Note especially that moves to areas with higher density, f(y∗) > f(x),
are always accepted.

A common choice is to let g be an N(0, s2Σ) density with a suitably
chosen covariance matrix Σ and a scaling constant s. In this case proposals
are generated by adding a zero-mean Gaussian vector to the current state,
y∗ = x + sε where ε ∈ N(0,Σ). What remains for the practitioner in this
case is the choice of scaling constant s and covariance matrix Σ. The latter
choice is difficult and in practise Σ is often chosen to be a diagonal matrix
of ones. For s some general rules of thumb can be derived though. Lets first
look at a simple example:

The function rwmh() implements a Gaussian random-walk for a standard
Gaussian target density given input N number of iterations, x0 starting value
and s scaling constant:

rwmh=function(N,x0,s){
x=vector(’numeric’,N)
x[1]=x0
acc=0
for(i in 1:m)
{

48 CHAPTER 4. MARKOV CHAIN MONTE-CARLO

0 100 200 300 400 500 600 700 800 900 1000
−4

−2

0

2

4

0 100 200 300 400 500 600 700 800 900 1000
−5

0

5

0 100 200 300 400 500 600 700 800 900 1000
−4

−2

0

2

4

Figure 4.7: Random walks with too small s (top), too large s (middle) and
well-tuned s (bottom)

y=x[i]+s*rnorm(1)
a=exp(-y^2/2+x[i]^2/2)
a=min(a,1)

u=runif(1)
if(u<a){
x[i+1]=y
acc=acc+1

}else{
x[i+1]=x[i]

}
}
rwmh=list(acc=acc,x=x)

}

x0=1
N=1000
s=30

RW=rwmh(N,x0,s)
RW$acc

quartz()
plot(RW$x,type=’l’)
plot(Z[,2],col=’red’,type=’l’)

In Figure 4.7 we have plotted outputs from 1000 iterations with x0=0

4.8. RANDOM WALK PROPOSAL 49

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.8: Autocorrelation functions for the output with s = .3 (dotted)
s = 30 (dashed) and s = 3 (solid)

and scales s set to 0.3, 30 and 3. For the smallest scaling constant almost all
of the proposed moves are accepted (908 out of 1000) but they are too small
and the chain travels slowly across the support of f . For s = 30 very few
proposals are accepted (48 out of 1000), but they are all very “innovative”.
Finally the result using s = 3 looks most promising. The methods can be
compared by estimating the auto-correlation functions of the output as is
done in Figure 4.8. Here it is clear that if our goal is to estimate the mean,
this will be most efficient for s = 3.

Are there any general rules of thumb on how to choose random-walk scale
s? The answer is yes, at least asymptotically. It turns out monitoring the
acceptance rate is the key, and that for a large class of densities f : Rd 7→ R,
asymptotically, as d → ∞, it is optimal to choose s in such a way that
23.4. . . % of the proposed moves are accepted (when d = 1 a slightly higher
acceptance rate is often favourable). This is optimal for any fixed Σ.

Returning to the choice of Σ, note in Figure 4.9 that if we set Σ to
be a diagonal matrix of ones, the random-walk sampler will have similar
problems with dependent components as the Gibbs-sampler.

In addition, orthogonalising does not help unless we also standardise
variances. A good choice of Σ is one that is similar to the covariance matrix
of the target (up to a proportionality constant). An approximation that is
often useful is to let Σ be proportional to the Hessian matrix of log f (i.e.
H(x) with entries Hi,j = d(log f)2/(dxi dxj)) evaluated at e.g. a mode of f
if this can be found.

50 CHAPTER 4. MARKOV CHAIN MONTE-CARLO

1
θ

θ
2

θ
1

θ
2

Figure 4.9: Left panel: With a symmetric random-walk proposal (solid con-
tours) tuned to the optimal acceptance rate, movement will be slow if cor-
relation of the posterior (dashed contours) is strong. Right panel: With
variances different the similar problem occurs. .

4.8.1 Multiplicative random walk

If the target has a very heavy tail, the random walk proposal will generally
perform poorly. In a similar fashion to the independence sampler with a
light-tailed proposal, since it takes the chain a long time to travel all the
way to the tail, it will stay there for a long time when it reaches it.

In this situation, a Multiplicative random-walk proposal is often more
efficient. The random-walk proposal is formed by adding an independent
component, y∗ = x(i−1) + ε, the multiplicative random-walk instead multi-
plies with an independent component, y∗ = x(i−1)ε. If we denote the density
of ε by g, the proposal-generating density is q(x, y) = g(y/x)/x and we ac-
cept/reject with probability

α(x, y) = min(1,
f(y)g(x/y)x

f(x)g(y/x)y
).

4.9 Hybrid strategies

In statistical problems there is often a natural choice of partition for the
Gibbs-sampler, however one or more of the conditional distributions in Al-
gorithm 4.2 might be difficult to sample from directly. In this case, an exact
draw from the tricky conditionals can be replaced by one iteration of the
Metropolis-Hastings algorithm. This strategy is often necessary in complex
problems and is sometimes referred to as the Metropolis–within–Gibbs al-
gorithm.

4.9. HYBRID STRATEGIES 51

0 200 400 600 800 1000
0

10

20

30

40

50

60

iteration

Figure 4.10: Typical behaviour of a random walk Metropolis Hastings on
a heavytailed target. Seemingly stable behaviour is exchanged with long
excursions in the tails.

	I Simulation and Monte-Carlo Integration
	Simulation and Monte-Carlo integration
	Issues in simulation
	Buffon's Needle
	Raw ingredients

	Simulating from specified distributions
	Transforming uniforms
	Transformation methods
	Rejection sampling
	Conditional methods

	Monte-Carlo integration
	Generic Monte Carlo integration
	Bias and the Delta method
	Variance reduction by rejection sampling
	Variance reduction by importance sampling
	Unknown constant of proportionality

	Markov Chain Monte-Carlo
	Markov chains - basic concepts
	Markov chains with continuous state-space
	Markov chain Monte-Carlo integration
	Burn-in
	After burn-in

	Two continuous time Markov chain models
	Autoregressive model
	Modeling cloud coverage

	The Metropolis-Hastings algorithm
	The Gibbs-sampler
	Independence proposal
	Random walk proposal
	Multiplicative random walk

	Hybrid strategies

