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Chapter 4

Markov Chain Monte-Carlo

Today, the most-used method for simulating from complicated and/or high-
dimensional distributions is Markov Chain Monte Carlo (MCMC). The basic
idea of MCMC is to construct a Markov Chain that has f as stationary
distribution, where f is the distribution we want to simulate from. In this
chapter we introduce the algorithms, more applications will be given later.

4.1 Markov chains - basic concepts

The sequences of random values, say Xn’s, that we have obtained so far
were obtained by independent sampling from a certain distribution. In our
context this type of sampling was referred to as Monte Carlo sampling. The
simplest but important case of this was a sequence of independent Bernoulli
variables that models a random flip of a not necessarily symmetric coin.
The limiting results of probability theory such as the law of large numbers
or the central limit theorem have been used to establish some fundamental
asymptotic properties (approximation errors) of the Monte Carlo method.
Markov chains can be viewed as simplest models for obtained sequence of
random observations that does not involve direct independent samples. The
dependence in a sequence of experiments affecting the next value is only
through the most recent value. Simplest Markov chains are those that takes
values in a discrete (finite or countable) state-space.

More specifically, we take a sequence Xn’s such that the distribution of
Xn+1 given that we obtained Xn = x(n), . . . , X0 = x(0) depends only on the
value x(n) and not on x(i)’s for i < n. The transition probabilities from the
state i to j are given by

q(j|i) = P (Xn+1 = j|Xn = i).

They together with the initial distribution distribution X0 given by π(i) =
P (Xn = i) on the states i’s fully described distributions of the model.

Example 4.1. For a simple example of a Markov chain, let us consider
a simple case of three states -1,0,1 and the following matrix P = (pij)
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14 CHAPTER 4. MARKOV CHAIN MONTE-CARLO

representing the transition probabilities pij = qj|i

P =

 1− 2p 2p 0
p 1− 2p p
0 2p 1− 2p

 .
The following program simulates from this Markov chain that start from a
state x0.

SMC=function(n,p,x0){
x=vector("numeric",n)
x[1]=x0
for(i in 2:n)

{
z=rmultinom(1,1,prob=c(p,1-2*p,p))
if(x[i-1]==0){
x[i]=z[1,1]-z[3,1]

}else{
if(x[i-1]==1){

x[i]=x[i-1]-z[1,1]-z[3,1]
}else{

x[i]=x[i-1]+z[1,1]+z[3,1]
}

}
}
SMC=x

}

An example of sample can be obtained by running

n=100
p=1/4
x0=0
x=SMC(n,p,0)
plot(x)

and is shown in Figure 4.1 Left.

The theory of Markov chains demonstrates that much of asymptotics
observed for independent samples are still valid for Markov chains. For
example, in Figure 4.1 Right it is observed that a sort of law of large numbers
should be valid for the Markov chain in hand as the asymptotic frequency
of observing the state ”1” is evidently converging. One can utilize the above
program to observe the asymptotics

n=2000
p=1/4
x=SMC(n,p,1)
P1=cumsum(x==1)/cumsum(rep(1,n))
plot(P1,type=’l’)
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Figure 4.1: A simple 3-state Markov chain. Left: a trajectory of size 100
starting from x(0) = 0, Right: asymptotic frequency of state ”1” based on
several trajectories of size 2000.

Markov Chains for which the law of large numbers holds are called ergodic.

Exercise 4.1. Using the provided example of a Markov chain, make some
claims about asymptotical values of the frequencies of states and provided
with analysis of error of your claims based on Monte Carlo study.

Markov Chains can serve often as simple models of real phenomena oc-
curring in time. The following exercise can lead the reader through an
attempt to model weather in her/his town. For this one needs a definition
of a stationary state.

Definition 4.1. A distribution π0 on the state space is called stationary if
the process starting from that distribution remains in this distribution over
the entire time, or more technically the row vector of probabilities given by
π0 satisfies the equation

π0P = π0.

Exercise 4.2. Consider the following simplistic model for certain aspect of
the weather that assumes the lack of memory property, i.e. that cloudeness
and rain depends only on the next day depends only on what it was on the
previous day. We consider five states: sunny (S) or partly sunny (P), cloudy
(C), rainy (R), heavy rain (H). Because of the lack of memory property,
this weather model is fully described by providing the matrix of transition
probabilities, that describe what are chances for tomorrow to be in one of the
five states under the conditions that today we observe one of these states.

1. Propose the values of the transition probabilities for summer weather
in your town (use your own judgement, not necessarily scientific evi-
dence).
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2. Using the proposed values generate a 90 days long trajectory of weather
pattern.

3. Based on your sample estimate the probabilities that on a randomly
chosen day in summer the weather will be in one of its five states.

4. Check if your estimated values of probabilities satisfies the stationary
state equation for the proposed Markov process.

5. Compare the estimated values with the evaluated theoretical values for
the stationary state (the latter can be found by solving a proper linear
equation).

It should be remembered that not always a Markov chain leads to the
asymptotics observed for independent sampling and the conditions for this
have to be examined. An interested reader can do the following exercise to
see possible problems.

Exercise 4.3 ( Random Walk). Consider a Markov Chain with infinite but
discrete state space

Z = {. . . ,−2,−1, 0, 1, 2, . . . }

and with transition probabilities given by

pij =


p : j = i+ 1;

1− p− q : j = i;
q : j = i− 1;
0 : otherwise

Generate sample paths of such a Markov chain. By analyzing sample paths,
discuss if such a Markov chain is ergodic.

4.2 Markov chains with continuous state-space

The theory for Markov chains that take values in a continuous state-space
is complex. Much more so than the theory for finite/countable state-spaces,
that you might have already been exposed to. We will here not pretend to
give a full account of the underlying theory, but be happy with formulating
a number of sufficient conditions under which the methods work. Links to
more advanced material will be provided on the course web-page.

In this chapter, we will consider Markov-Chains X1, X2, . . . , XN defined
through a starting value x0 and a transition density q̃. The transition density
xi 7→ q̃(xi−1, xi) = g(xi|xi−1) is the density of Xi|Xi−1 = xi−1, and this
determines the evolution of the Markov-chain across the state-space. We
would ideally like to draw the starting value x0 and choose q̃ in such a way
that the following realisations x1, x2, . . . , xN are independent draws from
f , but this is a too ambitious task in general. In contrast to the previous
chapter, here our draws will neither be independent nor exactly distributed



4.3. MARKOV CHAIN MONTE-CARLO INTEGRATION 17

according to f . What we will require is that f is the asymptotic distribution
of the chain, i.e. if Xi takes values in X ,

P (Xn ∈ A)→
∫
A
f(x) dx, (4.1)

as n → ∞, for all subsets A of X and independently of the starting value
x0 ∈ X .

A condition on the transition density that ensures the Markov chain has
a stationary distribution f , is that it satisfies the global balance condition

f(y)q̃(y, x) = f(x)q̃(x, y). (4.2)

This says roughly that the flow of probability mass is equal in both directions
(i.e. from x to y and vice versa). Global balance is not sufficient for the
stationary distribution to be unique (hence the Markov chain might converge
to a different stationary distribution). Sufficient conditions for uniqueness
are irreducibility and aperiodicity of the chain, a simple sufficient condition
for this is that the support of f(y) is contained in the support of y 7→ q̃(x, y)
for all x (minimal necessary conditions for q̃ to satisfy (4.1) are not known
in general, however our sufficient conditions are far from the weakest known
in literature).

4.3 Markov chain Monte-Carlo integration

Before going into the details of how to construct a Markov chain with spec-
ified asymptotic distribution, we will look at Monte-Carlo integration un-
der the new assumption that draws are neither independent not exactly
from the target distribution. Along this line, we need a Central Limit
Theorem for Markov chains. First we observe that if X1, X2, . . . , Xn is a
Markov chain on Rd and φ : Rd 7→ R, then with Zi = φ(Xi), the se-
quence Z1, Z2, . . . , Zn forms a Markov chain on R. As before, we want to
approximate τ = E(Z) = E(φ(X)) by tN = N−1

∑N
i=1 z

(i), for a sequence

z(i) = φ(x(i)) of draws from the chain.

4.3.1 Burn-in

An immediate concern is that, unless we can produce a single starting value
x0 with the correct distribution, our sampled random variables will only
asymptotically have the correct distribution. This will induce a bias in our
estimate of τ .

In general, given some starting value x(0), there will be iterations x(i),
i = 1, . . . , k, before the distribution of x(i) can be regarded as “sufficiently
close” to the stationary distribution f(x) in order to be useful for further

analysis (i.e. the value of x(i) is still strongly influenced by the choice of x(0)

when i ≤ k). The values x(0), . . . , x(k) are then referred to as the burn-in of
the chain, and they are usually discarded in the subsequent output analysis.
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For example when estimating
∫
φ(x)f(x) dx, it is common to use

1

N − k

N∑
i=k+1

φ(x(i)).

An illustration is given in Figure 4.2. We now provide the CLT for Markov
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Figure 4.2: A Markov chain starting from x(0) = −20 that seems to have
reached its stationary distribution after roughly 70 iterations

Chains.

Theorem 4.1. Suppose a geometrically ergodic Markov chain Xi, i =
1, . . . , n, on Rd with stationary distribution f and a real-valued function
φ : Rd 7→ R satisfies E(φ2+ε(X)) ≤ ∞ for some ε > 0, then with τ =
E(φ(X)) and Tn = n−1

∑n
i=1 φ(Xi)

P
(√n(Tn − τ)

σ
≤ x

)
→ Φ(x) (4.3)

where Φ is the distribution function of the N(0, 1) distribution and

σ2 = r(0) + 2

∞∑
i=1

r(i) (4.4)

where r(i) = limk→∞Cov{φ(Xk), φ(Xk+i)}, the covariance function of a
stationary version of the chain.
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Note that the above holds for an arbitrary starting value x0. The error
due to “wrong” starting value, i.e. the bias E(Tn)− τ , is of O(n−1). Hence
squared bias is dominated by variance, and asymptotically negligible. This
does not suggest that it is unnecessary to discard burn-in, but rather that
it is unnecessary to put too much effort into deciding on how long it should
be. A visual inspection usually suffices.

4.3.2 After burn-in

If we manage to simulate our starting value x(0) from the target distribution
f , all subsequent values will also have the correct distribution. Would our
problems then be solved if we were given that single magic starting value
with the correct distribution? As the above discussion suggests, the answer
is no. The “big problem” of MCMC is that (4.4) can be very large, especially
in problems where the dimension d is large. It is important to understand
that converging to the stationary distribution (or getting close enough) is
just the very beginning of the analysis. After that we need to do sufficiently
many iterations in order for the variance σ2/n of Tn to be small.

It is actually a good idea to choose starting values x(0) that are far away
from the main support of the distribution. If the chain then takes a long
time to stabilize you can expect that even after reaching stationarity, the
autocorrelation of the chain will be high and σ2 in (4.4) large. Here we
give a rough guide for estimating σ2, which is needed want we to produce a
confidence interval:

1. We assume your draws x(i), i = 1, . . . , N are d-variate vectors. First
make a visual inspection of each of the d trajectories, and decide a
burn-in 1, . . . , k where all of them seems to have reached stationarity.
Throw away the first k sample vectors.

2. Now you want to estimate E(φ(X)). Compute zi = φ(x(i+k)), i =
1, . . . , N−k and estimate the autocorrelation function of the sequence
zi, i.e. the function ρ(t) = Corr(Z1, Zt) over a range of values t =
1, . . . , L, this can be done with R-function acf (though it uses the
range −L, . . . , L). A reasonable choice of L is around (N − k)/50
(estimates of ρ(L) tends to be too unreliable for larger values). If the
estimated autocorrelation function does not reach zero in the range
1, . . . , L, go back to the first step and choose a larger value for N .

3. Divide your sample into m batches of size l, ml = N−k. Here l should
be much larger than the time it took for the autocorrelation to reach
zero in the previous step. The batches are (z1, . . . , zl),(zl+1, . . . , z2l),
. . ., (zm(l−l)+1, . . . , zml). Now compute the arithmetic mean z̄j of each
batch, j = 1, . . . ,m. Estimate τ by the mean of the batch means and
σ2 by s2/m, where s2 is the empirical variance of the batch means.

This procedure is based on the fact that if batches are sufficiently large,
their arithmetic means should be approximately uncorrelated. Hence, since
our estimate is the mean of m approximately independent batch means it
should have variance σ2b/m, where σ2b is the variance of a batch mean.

We now turn to the actual construction of the Markov chains.
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4.4 Two simple continuous time Markov chain mod-
els

4.4.1 Autoregressive model

Probably, the simplest continuous state is an autoregressive time series Xn

that is given by
Xn+1 = ρXn + εn,

where εn are iid normal random variables with the mean zero and variance
σ2. One can easily argue that this is a Markov chain. Derivation of the
transition densities is left for the reader, who can also study the model
through simulations as suggested in the following exercise.

Exercise 4.4. Propose a simulator of the autoregressive model. By its
means simulate trajectories of from such a model and consider for which
values of the parameter ρ the model is stable. Using autocorrelation fa-
cilities of R approximate the autocorrelation function of Xn as well as its
variance.

4.4.2 Modeling cloud coverage

Daily cloud coverage is an important characteristics in weather studies. It
can be expressed in the percentage of sunlight passing through the clouds
relatively to the amount recorded when the sky is completely clear. Modeling
such a process is extension of the simple model of Exercise 4.2. For modeling
percentages the beta distribution is a natural family of distributions. The
densities of this distributions are given up to a proportionality constant by

f(x;α, β) ∼ xα−1(1− x)β−1, x ∈ [0, 1].

We leave to the reader to develop a Markov model that would model cloud
coverage using continuous state space and beta distributions in the spirit of
Exercise 4.2 and Example 4.1

Exercise 4.5. Propose a Markov chain approach to modeling cloud cover-
age using beta distributions. For the model develop programs and study its
stability and asymptotic behavior.
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