
Monte Carlo Methods

Lecture notes for MAP001169

Based on Script by Martin Sköld

adopted by Krzysztof Podgórski

2

Contents

I Simulation and Monte-Carlo Integration 5

1 Simulation and Monte-Carlo integration 7
1.1 Issues in simulation . 7
1.2 Buffon’s Needle . 7
1.3 Raw ingredients . 10

2 Simulating from specified distributions 11
2.1 Transforming uniforms . 11
2.2 Transformation methods . 14
2.3 Rejection sampling . 15

3

4 CONTENTS

Part I

Simulation and Monte-Carlo
Integration

5

Chapter 1

Simulation and Monte-Carlo
integration

1.1 Issues in simulation

Whatever the application, the role of simulation is to generate data which
have (to all intents and purposes) the statistical properties of some specified
model. This generates two questions:

1. How to do it; and

2. How to do it efficiently.

To some extent, just doing it is the priority, since many applications are
sufficiently fast for even inefficient routines to be acceptably quick. On the
other hand, efficient design of simulation can add insight into the statistical
model itself, in addition to CPU savings. We’ll illustrate the idea simply
with a well–known example.

1.2 Buffon’s Needle

We’ll start with a simulation experiment which has intrinsically nothing
to do with computers. Perhaps the most famous simulation experiment is
Buffon’s needle, designed to calculate (not very efficiently) an estimate of π.
There’s nothing very sophisticated about this experiment, but for me I really
like the ‘mystique’ of being able to trick nature into giving us an estimate
of π. There are also a number of ways the experiment can be improved
on to give better estimates which will highlight the general principle of
designing simulated experiments to achieve optimal accuracy in the sense of
minimizing statistical variability.

Buffon’s original experiment is as follows. Imagine a grid of parallel lines
of spacing d, on which we randomly drop a needle of length l, with l ≤ d.
We repeat this experiment n times, and count R, the number of times the

7

8 CHAPTER 1. SIMULATION AND MONTE-CARLO INTEGRATION

needle intersects a line. Denoting ρ = l/d and φ = 1/π, an estimate of φ is

φ̂0 =
p̂

2ρ

where p̂ = R/n.

Thus, π̂0 = 1/φ̂0 = 2ρ/p̂ estimates π.
The rationale behind this is that if we let x be the distance from the

centre of the needle to the lower grid point, and θ be the angle with the
horizontal, then under the assumption of random needle throwing, we’d
have x ∼ U [0, d] and θ ∼ U [0, π]. Thus

p = Pr(needle intersects grid)

=
1

π

∫ π

0
Pr(needle intersects |θ = φ)dφ

=
1

π

∫ π

0

(
2

d
× l

2
sinφ

)
dφ

=
2l

πd

A natural question is how to optimise the relative sizes of l and d. To
address this we need to consider the variability of the estimator φ̂0. Now,
R ∼ Bin(n, p), so Var(p̂) = p(1−p)/n. Thus Var(φ̂0) = 2ρφ(1−2ρφ)/4ρ2n =
φ2(1/2ρφ − 1)/n which is minimized (subject to ρ ≤ 1) when ρ = 1. That
is, we should set l = d to optimize efficiency.

Then, φ̂0 = p̂
2 , with Var(φ̂0) = (φ/2− φ2)/n.

Figure 1.1 gives 2 realisations of Buffon’s experiment, based on 5000
simulations each. The figures together with an estimate can be produced in
R by

buf=function(n,d,l){

x=runif(n)*d/2

theta=runif(n)*pi/2

I=(l*cos(theta)/2>x)

R=cumsum(I)

phat=R/(1:n)

nn=1:n

plot(nn[phat>0],2*l/d/phat[phat>0],xlab=’proportion of hits’,ylab=’pi estimate’,type=’l’)

}

Exercise 1.1. Provide with the full details in the argument above which
showed that the optimality is achieved for the estimator φ̂.

Use the R-code given above and design a Monte Carlo study that confirms
(or not) that optimality is also achieved for π̂ when ρ = 1, i.e. d = l. First,
explain why it is not obvious. When discussing this review the concepts
of the bias, the variance and the mean-square error and relations between
these three. Then explain or/and analyze numerically what is the bias, the

variance and the mean-square error of φ̂ and π̂. Hint: Note that the event
that the needle does not crosses the line in any trial has a positive probability

1.2. BUFFON’S NEEDLE 9

number of simulations

pr
op

or
tio

n
of

 h
its

0 1000 2000 3000 4000 5000

3
4

5
6

number of simulations

pr
op

or
tio

n
of

 h
its

0 1000 2000 3000 4000 5000

3.
0

3.
5

4.
0

4.
5

5.
0

Figure 1.1: Two sequences of realisations of Buffon’s experiment

and this affects existence of the mean and the variance of π̂. Modify the
estimator to avoid the problem.

The argument given above assumed that l ≤ d. Modify the algorithm to
investigate also the case of d < l. Investigate the optimality in this case.

Thus I’ve used the computer to simulate the physical simulations. You
might like to check why this code works.

There are a catalogue of modifications which you can use which might
(or might not) improve the efficiency of this experiment. These include:

1. Using a grid of rectangles or squares (which is best?) and basing
estimate on the number of intersections with either or both horizontal
or vertical lines.

2. Using a cross instead of a needle.

3. Using a needle of length longer than the grid separation.

So, just to re–iterate, the point is that simulation can be used to answer
interesting problems, but that careful design may be needed to achieve even
moderate efficiency.

10CHAPTER 1. SIMULATION AND MONTE-CARLO INTEGRATION

1.3 Raw ingredients

The raw material for any simulation exercise is random digits: transforma-
tion or other types of manipulation can then be applied to build simulations
of more complex distributions or systems. So, how can random digits be
generated?

It should be recognised that any algorithmic attempt to mimic random-
ness is just that: a mimic. By definition, if the sequence generated is de-
terministic then it isn’t random. Thus, the trick is to use algorithms which
generate sequences of numbers which would pass all the tests of random-
ness (from the required distribution or process) despite their deterministic
derivation. The most common technique is to use a congruential generator.
This generates a sequence of integers via the algorithm

xi = axi−1(mod M) (1.1)

for suitable choices of a and M . Dividing this sequence by M gives a se-
quence ui which are regarded as realisations from the Uniform U [0, 1] distri-
bution. Problems can arise by using inappropriate choices of a and M . We
won’t worry about this issue here, as any decent statistics package should
have had its random number generator checked pretty thoroughly. The
point worth remembering though is that computer generated random num-
bers aren’t random at all, but that (hopefully) they look random enough for
that not to matter.

In subsequent sections then, we’ll take as axiomatic the fact that we can
generate a sequence of numbers u1, u2, . . . , un which may be regarded as n
independent realisations from the U [0, 1] distribution.

Chapter 2

Simulating from specified
distributions

In this chapter we look at ways of simulating data from a specified distribu-
tion function F , on the basis of a simulated sample u1, u2, . . . , un from the
distribution U [0, 1].

2.1 Transforming uniforms

We start with the case of constructing a draw x from a random variable
X ∈ R with a continuous distribution F on the basis of a single u from
U [0, 1]. It is natural to try a simple transformation x = h(u), but how should
we choose h? Let’s assume h is increasing with inverse h−1 : R 7→ [0, 1].
The requirement is now that

F (v) = P (X ≤ v) = P (h(U) ≤ v,)
= P (h−1(h(U)) ≤ h−1(v)) = P (U ≤ h−1(v))

= h−1(v),

for all v ∈ R and where in the last step we used that the distribution function
of the U [0, 1] distribution equals P (U ≤ u) = u, u ∈ [0, 1]. The conclusion
is clear, we should choose h = F−1. If F is not one-to-one, as is the case
for discrete random variables, the above argument remains valid if we define
the inverse as

F−1(u) = inf{x;F (x) ≥ u}. (2.1)

The resulting algorithm for drawing from F is the Inversion Method :

Algorithm 2.1 (The Inversion Method).

1. Draw u from U [0, 1].

2. x = F−1(u) can now be regarded a draw from F .

11

12 CHAPTER 2. SIMULATING FROM SPECIFIED DISTRIBUTIONS

Figure 2.1 illustrates how this works. For example, to simulate from the

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

u

U

X

F

Figure 2.1: Simulation by inversion; the random variable X = F−1(U) will
have distribution F if U is uniformly distributed on [0, 1].

exponential distribution we have F (x) = 1− exp(−λx), so

F−1(u) = −λ−1 log(1− u).

Thus with

u=runif(1,n);
x=-(log(1-u))/lambda;

we can simulate n independent values from the exponential distribution with
parameter lambda. Figure 2.2 shows a histogram of 1000 standard (λ = 1)
exponential variates simulated with this routine.

For discrete distributions, the procedure then simply amounts to search-
ing through a table of the distribution function. For example, the distribu-
tion function of the Poisson(2) distribution is

x F(x)

0 0.1353353
1 0.4060058
2 0.6766764
3 0.8571235
4 0.9473470
5 0.9834364
6 0.9954662

2.1. TRANSFORMING UNIFORMS 13

0 2 4 6

0
10
0

20
0

30
0

x

fre
qu
en
cy

Figure 2.2: Histogram of 1000 simulated unit exponential variates

7 0.9989033
8 0.9997626
9 0.9999535
10 0.9999917

so, we generate a sequence of standard uniforms u1, u2, . . . , un and for each
ui obtain a Poisson(2) variate xi where F (xi − 1) < ui ≤ F (xi). So, for
example, if u1 = 0.7352 then x1 = 3.

The limitation on the efficiency of this procedure is due to the necessity
of searching through the table, and there are various schemes to optimize
this aspect.

Returning to the continuous case, it may seem that the inversion method
is sufficiently universal to be the only method required. In fact, there are
many situations in which the inversion method is either (or both) compli-
cated to program or excessively inefficient to run. The inversion method is
only really useful if the inverse distribution function is easy to program and
compute. This is not the case, for example, with the Normal distribution
function for which the inverse distribution function, Φ−1, is not available an-
alytically and slow to evaluate numerically. An even more serious limitation
is that the method only applies for generating draws from univariate ran-
dom variables. To deal with such cases, we turn to a variety of alternative
schemes.

14 CHAPTER 2. SIMULATING FROM SPECIFIED DISTRIBUTIONS

2.2 Transformation methods

The inversion method is a special case of more general transformation meth-
ods. The following theorem can be used to derive the distribution of Z =
h(X) for a more general class of real-valued random variables X.

Theorem 2.1 (Transformation theorem). Let X ∈ X ⊆ R have a contin-
uous density f and h a function with differentiable inverse g = h−1. Then
the random variable Z = h(X) ∈ R has density

f(g(z))|g′(z)|, (2.2)

for z ∈ h(X) and zero elsewhere.

Proof. The proof is a direct application of the change-of-variable theorem
for integrals. Note that two random variables X and Z have the same
distribution iff P (X ∈ A) = P (Z ∈ A) for all sets A.

This device is used extensively in simulation, for example when we want
to generate a N(µ, σ2) variate y, it is common to first draw x from N(0, 1)
and then set y = σx+µ. Use Theorem 2.1 to show that this works. Sums of
random variables can also be useful in creating new variables. Recall that

Theorem 2.2. Let X ∈ R and Y ∈ R be independent with densities f and g
respectively, then the density of Z = X+Y equals f ∗g(z) =

∫
f(t−z)g(t) dt.

This can be used to generate Gamma random variables. A random
variable X has a Gamma(a, 1) distribution if its density is proportional to
xa−1 exp(−x), x > 0. Using Theorem 2.2 we can show that if X and Y are
independent Gamma(a, 1) and Gamma(a′, 1) respectively, then Z = X + Y
has a Gamma(a + a′, 1) distribution. Since Gamma(1, 1) (i.e. Exponen-
tial(1)) variables are easily generated by inversion, a Gamma(k, 1) variable
Z, for integer values k, is generated by

z =

k∑
i=1

− log(uk) (2.3)

using independent draws of uniforms u1, . . . , un. As an alternative we can
use a combination of Theorems 2.1 and 2.2 to show that

z =
2k∑
i=1

x2i /2 (2.4)

is a draw from the same distribution if x1, . . . , x2k are independent standard
Normal draws.

Example 2.1 (The Box-Muller transformation). This is a special trick to
simulate from the Normal distribution. In fact it produces two independent
variates in one go. Let u1, u2 be two independently sampled U[0, 1] variables,
then it can be shown that

x1 =
√
−2 log(u2) cos(2πu1) and x2 =

√
−2 log(u2) sin(2πu1)

are two independent N(0, 1) variables.

2.3. REJECTION SAMPLING 15

Below we give the multivariate version of Theorem 2.1.

Theorem 2.3 (Multivariate transformation theorem). Let X ∈ X ⊆ Rd

have a continuous density f and h : X 7→ Rd a function with differentiable
inverse g = h−1. Further write J(z) for the determinant of the Jacobian
matrix of g = (g1, . . . , gd),

J(x) =

∣∣∣∣∣∣∣
dg1(z)/dz1 . . . dg1(z)/dzd

...
. . .

...
dgd(z)/dz1 . . . dgd(z)/dzd

∣∣∣∣∣∣∣ . (2.5)

Then the random variable Z = h(X) ∈ Rd has density

f(g(z))|J(z)|, (2.6)

for z ∈ h(X) and zero elsewhere.

Example 2.2 (Choleski method for multivariate Normals). The Choleski
method is a convenient way to draw a vector z from the multivariate Nor-
mal distribution Nn(0,Σ) based on a vector of n independent N(0, 1) draws
(x1, x2, . . . , xn). Choleski decomposition is a method for computing a ma-
trix C such that CCT = Σ, in R the command is chol. We will show
that z = Cx has the desired distribution. The density of X is f(x) =

(2π)−d/2 exp(−xTx/2) and the Jacobian of the inverse transformation, x =

C−1z, equals J(z) = |C−1| = |C|−1 = |Σ|−1/2. Hence, according to Theorem
2.3, the density of Z equals

f(C−1z)|Σ|−1/2 = (2π)−d/2 exp(−(C−1z)T (C−1z)/2)|Σ|−1/2

= (2π)−d/2 exp(−zTΣ−1z/2)|Σ|−1/2,

which we recognise as the density of a Nn(0,Σ) distribution. Of course,
z + µ, µ ∈ Rd is a draw from Nn(µ,Σ).

2.3 Rejection sampling

The idea in rejection sampling is to simulate from one distribution which is
easy to simulate from, but then to only accept that simulated value with
some probability p. By choosing p correctly, we can ensure that the sequence
of accepted simulated values are from the desired distribution.

The method is based on the following theorem:

Theorem 2.4. Let f be the density function of a random variable on Rd

and let Z ∈ Rd+1 be a random variable that is uniformly distributed on the
set A = {z; 0 ≤ zd+1 ≤ Mf(z1, . . . , zd)} for an arbitrary constant M > 0.
Then the vector (Z1, . . . , Zd) has density f .

16 CHAPTER 2. SIMULATING FROM SPECIFIED DISTRIBUTIONS

Proof. First note that∫
A
dz =

∫
Rd

(∫ Mf(z1,...,zd)

0
dzd+1

)
dz1 · · · dzd

= M

∫
f(z1, . . . , zd) dz1 · · · dzd = M.

Hence, Z has density 1/M on A. Similarily, with B ⊆ Rd, we have

P ((Z1, . . . , Zd) ∈ B) =

∫
{z;z∈A}∩{z;(z1,...,zd)∈B}

M−1 dz

= M−1
∫
B
Mf(z1, . . . , zd) dz1 · · · dzd

=

∫
B
f(z1, . . . , zd) dz1 · · · dzd,

and this is exactly what we needed to show.

The conclusion of the above theorem is that we can construct a draw
from f by drawing uniformly on an appropriate set and then drop the last
coordinate of the drawn vector. Note that the converse of the above the-
orem is also true, i.e. if we draw (z1, . . . , zd) from f and then zd+1 from
U(0,Mf(z1, . . . , zd)), (z1, . . . , zd+1) will be a draw from the uniform distri-
bution on A = {z; 0 ≤ zd+1 ≤ Mf(z1, . . . , zd)}. The question is how to
draw uniformly on A without having to draw from f (since this was our
problem in the first place); the rejection method solves this by drawing uni-
formly on a larger set B ⊃ A and rejecting the draws that end up in B\A.
A natural choice of B is B = {z; 0 ≤ zd+1 ≤ Kg(z1, . . . , zd)}, where g is
another density, the proposal density, that is easy to draw from and satisfies
Mf ≤ Kg.

Algorithm 2.2 (The Rejection Method).

1. Draw (z1, . . . , zd) from a density g that satisfies Mf ≤ Kg.

2. Draw zd+1 from U(0,Kg(z1, . . . , zd)).

3. Repeat steps 1-2 until zd+1 ≤Mf(z1, . . . , zd).

4. x = (z1, . . . , zd) can now be regarded as a draw from f .

It might seem superflous to have two constants M and G in the algorithm.
Indeed, the rejection method is usually presented with M = 1. We include
M here to illustrate the fact that you only need to know the density up to
a constant of proportionality (i.e. you know Mf but not M or f). This
situation is very common, especially in applications to Bayesian statistics.

2.3. REJECTION SAMPLING 17

The efficiency of the rejection method depends on how many points are
rejected, which in turn depends on how close Kg is to Mf . The probability
of accepting a particular draw (z1, . . . , zd) from g equals

P (Zd+1 ≤Mf(Z1, . . . , Zd))

=

∫ (∫ Mf(z1,...,zd)

0
(Kg(z1, . . . , zd))

−1 dzd+1)g(z1, . . . , zd

)
dz1 · · · dzd

=
M

K

∫
f(z1, . . . , zd) dz1 · · · dzd =

M

K
.

For large d it becomes increasingly difficult to find g and K such that M/K
is large enough for the algorithm to be useful. Hence, while the rejection
method is not strictly univariate as the inversion method, it tends to be
practically useful only for small d.

