Likelihood ratio and asymptotic consistency

November 23, 2023

Likelihood ratio and asymptotic consistency

General likelihood method

Suppose that X = (X₁,...,X_n) has density or frequency function p(x|θ) and we wish to test H : θ ∈ Θ₀ vs K : θ ∈ Θ₁. The test statistic we want to consider is the likelihood ratio given by

$$L(x) = \frac{\sup\{p(x,\theta) : \theta \in \Theta_1\}}{\sup\{p(x,\theta) : \theta \in \Theta_0\}}$$

- Tests that reject H for large values of L(x) are called likelihood ratio tests.
- Through this one can derive likelihood ratio tests in several important testing problems.
- Although the calculations differ from case to case, the basic steps are always the same.

Basic steps

- Calculate the MLE $\hat{\theta}$ of θ .
- 2 Calculate the MLE $\hat{\theta}_0$ of θ where θ may vary only over Θ_0 .
- Solution Form $\lambda(x) = p(x, \hat{\theta})/p(x, \hat{\theta}_0)$.
- Find distribution of λ(X) and specify the size α likelihood ratio test through the test statistic λ(X). and its 1 – αth quantile.
- **(**) Use the quantile to reject *H* if $\lambda(x)$ exceeds it.

Asymptotic justification of the likelihood procedures

- Asymptotic theory of statistics provides justification of the likelihood ratio procedures.
- In this theory, one studies stochastic process

 $\lambda_n(X,\theta)$

when $n \to \infty$, which becomes a stochastic process in θ .

Details will follow in the future lectures.

Consistency – an example of an asymptotic property

- Consistency is often referred to as the 0'th order asymptotics.
- Suppose that we have a sample $X_1, ..., X_n$ from P_{θ} , where $\theta \in \Theta$.
- We want to estimate a real or vector $q(\theta)$ by $\hat{q}_n(X_1, \ldots, X_n)$.
- Consistency states

$$\lim_{n\to\infty}\hat{q}_n(X_1,\ldots,X_n)\stackrel{P}{=}q(\theta).$$

This asymptotics allows to study

$$\log(\lambda_n(X)) = \log(p(X, \hat{q}_n(\theta))) - \log(p(X, q(\theta))),$$

which happens to converge to a Gaussian process centered at zero.

• By some 'inversion' method one can establish distributional properties of $\hat{q}_n(\theta)$), which leads to asymptotic normality of estimators.