

Prediction Regions

March 12, 2025

Summary

- We consider intervals based on observable random variables that contain an unobservable random variable with probability at least $1 - \alpha$.
- In the case of a normal sample of size $n + 1$ with only n variables observable, we construct the Student t prediction interval for the unobservable variable.
- For a sample of size $n + 1$ from a continuous distribution, we show how the order statistics can be used to give a distribution-free prediction interval.
- The Bayesian formulation is based on the posterior predictive distribution which is the conditional distribution of the unobservable variable given the observable variables.
- The Bayesian prediction interval is derived for the normal model with a normal prior.

Definitions and Examples

- Prediction regions apply to situations in which we want to predict the value of a random Y that is not observable, i.e. evaluate a **random interval** I based on the observed variables such that

$$P(Y \in I) \geq 1 - \alpha,$$

i.e. I contains the unknown value Y with prescribed probability $1 - \alpha$.

- We define a level $1 - \alpha$ prediction interval as an interval $[\underline{Y}, \bar{Y}]$ based on the observable data X such that

$$P(\underline{Y} \leq Y \leq \bar{Y}) \geq 1 - \alpha.$$

- Problem of finding prediction intervals is similar to finding confidence intervals using a pivot.
- Examples:
 - For instance, a doctor administering a treatment with delayed effect will give patients a time interval $[\underline{Y}, \bar{Y}]$ in which the treatment is likely to take effect.
 - Similarly, we may want an interval for the future GPA of a student or a future value of a portfolio.

A simple prediction problem

- Let $\mathbf{X} = (X_1, \dots, X_n)$ be i.i.d. $N(\mu, \sigma^2)$.
- We want a prediction interval for $Y = X_{n+1}$.
- The predictor based on \mathbf{X} , say $\hat{Y}(\mathbf{X})$, must be independent of Y .
- The mean square prediction error is then

$$MSPE = E(\hat{Y} - \mu)^2 + \sigma^2$$

We note that if \hat{Y} is considered to be an estimate of μ then

$$MSPE = MSE + \sigma^2.$$

- We call a predictor \hat{Y} unbiased if $E\hat{Y} = EY$.

Homework Show that in the above normal model, in the class of unbiased predictors the optimal one is $\hat{Y} = \bar{X}$. Demonstrate that $\bar{X} = E(Y|\mathbf{X})$

Homework Argue that for any model (not necessarily normal or i.i.d), if \mathbf{X} are observable and Y is not, then $E(Y|\mathbf{X})$ is an unbiased predictor.

The (Student) t Prediction Interval

- Prediction interval is based on a **pivot** constructed as follows

$$\hat{Y} - Y = \bar{X} - X_{n+1} \sim \mathcal{N}(0, [n^{-1} + 1]\sigma^2).$$

Homework Argue that $S^2 = \sum_{i=1}^n (X_i - \bar{X})^2$ is independent of \bar{X} and independent of X_{n+1} . *HINT: Support yourself with known properties of estimators of the mean and the variance for normal distribution.*

Homework Define

$$Z_p(Y) = \frac{\hat{Y} - Y}{\sqrt{n^{-1} + 1}\sigma}.$$

Show that

$$T_p(Y) = \frac{Z_p(Y)}{\sqrt{S^2/\sigma^2}} = \frac{\hat{Y} - Y}{\sqrt{n^{-1} + 1}S}$$

has the t-student distribution with $n - 1$ degrees of freedom.

- This yields the **prediction interval** which is parameter-free

$$Y = \bar{X} \pm \sqrt{n^{-1} + 1}S t_{n-1, 1-\alpha/2}.$$

A general approximate approach

- Suppose that the joint distribution of \mathbf{X}, Y is given by $p(\mathbf{x}, y; \theta)$.
- Assume that $\hat{\theta}$ is an estimator of θ based solely on \mathbf{X} .
- Consider the conditional distribution $p(y|\mathbf{x}; \theta)$ and a center $\hat{Y}(\mathbf{x}, \theta)$ of this distribution (mean or median or location). Take $\hat{Y}(\mathbf{x}, \hat{\theta})$ as a predictor of Y .
- Consider a connected set $A_{\theta, \mathbf{x}}$ containing $\hat{Y}(\mathbf{x}, \theta)$ (in 1D, an interval) such that

$$P(A_{\theta, \mathbf{x}} | \mathbf{x}; \theta) \geq 1 - \alpha.$$

- Take $A_{\hat{\theta}, \mathbf{x}}$ as an approximate prediction region (interval) for Y .

Homework Take the previous example and explain why it is only an approximate interval.

Homework One way to define \hat{Y} is through the mode of $p(y|\mathbf{x}; \theta)$. Another is through the maximizer of $p(\mathbf{x}|y; \theta)$. Which of these two is more in the spirit of the MLE, and why? Provide an example in which you consider these two approaches. Discuss the approximate prediction intervals derived from the above framework.

Bayesian Predictive Distributions

- In the Bayesian setup, let X_1, \dots, X_n be observable and X_{n+1} is to be predicted.

Homework *The posterior predictive distribution of X_{n+1} given $\mathbf{X} = \mathbf{x} = (x_1, \dots, x_n)$ is the conditional distribution of X_{n+1} given \mathbf{X} . Argue that*

$$q(x_{n+1}|\mathbf{x}) \propto E_{\Theta} \prod_{i=1}^{n+1} p(x_i|\Theta),$$

where \propto stands for 'is proportional'. Generalize to the case of not necessarily independent samples.

- Any interval $[\underline{Y}_B, \bar{Y}_B]$ is said to be a level $(1 - \alpha)$ Bayesian prediction interval for $Y = X_{n+1}$ if

$$Q(\underline{Y}_B \leq Y \leq \bar{Y}_B | \mathbf{x}) \geq 1 - \alpha.$$

- As usually, the Bayesian approach can be interpreted as a fully specified stochastic models with an unobservable θ (to be averaged with respect to its distribution). Here we have also unobservable $Y = X_{n+1}$ but this variable is to be predicted not averaged.

Bayesian Predictive Regionss

- The **posterior predictive distribution** of X_{n+1} given $\mathbf{X} = \mathbf{x} = (x_1, \dots, x_n)$ can be used to derived the prediction region $A(\mathbf{x})$ by choosing it so that

$$P(A_{\mathbf{x}}|\mathbf{x}) \geq 1 - \alpha.$$

- This can be done by taking k such that $A_k(\mathbf{x}) = \{x; q(x|\mathbf{x}) \leq k\}$ and $P(A_k(\mathbf{x})|\mathbf{x}) \geq 1 - \alpha$.
- Taking the smallest k for which the above holds is a natural and for continuous distribution it would mean that $P(A_k(\mathbf{x})|\mathbf{x}) = 1 - \alpha$.

Homework Consider a Bayesian setup with some specific distributions in which you implement explicitly the above strategy for the predictive intervals (or regions).