

Bayesian Formulation

March 12, 2025

Outline

1 Conjugate families

2 Bayesian formulations

Prior distributions for exponential families

- We have seen that beta prior distributions for the probability of success in Bernoulli trials leads to the conjugate families of priors, families to which the posterior after sampling also belongs.
- Suppose X_1, \dots, X_n is a sample from the k -parameter exponential family, and, as we always do in the Bayesian context, write $p(x|\theta)$ for $p(x; \theta)$. Then

$$p(\mathbf{x}|\theta) = \prod_{i=1}^n h(x_i) \exp \left(\sum_{j=1}^k \eta_j(\theta) \sum_{i=1}^n T_j(x_i) - nB(\theta) \right)$$

where θ is k -dimensional.

- A conjugate exponential family is obtained from it by letting $t_j = \sum_{i=1}^n T_j(x_i)$, $j = 1, \dots, k$ be “parameters” and treating θ as the ‘variables of interest’.

Conjugate exponential family

- We have for $\mathbf{t} = (t_1, \dots, t_{k+1}) \in \Omega$

$$\omega(\mathbf{t}) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \exp \left(\sum_{j=1}^k t_j \eta_j(\theta) - t_{k+1} B(\theta) \right) d\theta_1 \dots d\theta_k$$

where Ω is the set of \mathbf{t} for which the above is finite.

Theorem

The $(k + 1)$ -parameter exponential family given by

$$\pi_{\mathbf{t}}(\theta) = \exp \left(\sum_{j=1}^k \eta_j(\theta) t_j - t_{k+1} B(\theta) - \log \omega(\mathbf{t}) \right)$$

where $\mathbf{t} \in \Omega$ is a conjugate prior to the exponential family $p(\mathbf{x}|\theta)$.

The proof

$$\pi(\boldsymbol{\theta}|\mathbf{x}) \propto p(\mathbf{x}|\boldsymbol{\theta})\pi_{\mathbf{t}}(\boldsymbol{\theta})$$

$$\propto \exp \left(\sum_{j=1}^k \eta_j(\boldsymbol{\theta}) \left(\sum_{i=1}^n T_j(x_i) + t_j \right) - (t_{k+1} + n)B(\boldsymbol{\theta}) \right)$$

$$\propto \pi_{\mathbf{s}}(\boldsymbol{\theta}),$$

where

$$\mathbf{s} = (s_1, \dots, s_{k+1}) = \left(\sum_{i=1}^n T_1(x_i) + t_1, \dots, \sum_{i=1}^n T_k(x_i) + t_k, \right)$$

and \propto indicates that the two sides are proportional functions of $\boldsymbol{\theta}$.

Because two probability densities that are proportional must be equal, $\pi(\boldsymbol{\theta}|\mathbf{x})$ is the member of the exponential family given by the above expression and our assertion follows.

- Note that we have an updating formula in the sense that as data x_1, \dots, x_n become available, the parameter \mathbf{t} of the prior distribution is updated to $\mathbf{s} = (\mathbf{t} + \mathbf{a})$, where $\mathbf{a} = (\sum_{i=1}^n T_1(x_i), \dots, \sum_{i=1}^n T_k(x_i))$.
- It is easy to check that the beta distributions are obtained as conjugate to the binomial in this way.

Example

Suppose X_1, \dots, X_n is a $N(\theta, \sigma_0^2)$ sample, where σ_0^2 is known and θ is unknown. To choose a prior distribution for θ , we consider the conjugate family of the model.

For $n = 1$

$$p(x|\theta) \propto \exp\left(\frac{\theta x}{\sigma^2} - \frac{\theta^2}{2\sigma_0^2}\right).$$

This is a one-parameter exponential family with

$$T_1(x) = x, \quad \eta_1(\theta) = \theta/(\sigma_0^2), \quad B(\theta) = \theta^2/(2\sigma_0^2).$$

The conjugate two-parameter exponential family has density

$$\pi_t(\theta) = \exp(\theta t_1/\sigma_0^2 - \theta^2 t_2/(2\sigma_0^2) - \log \omega(t_1, t_2)).$$

Upon completing the square we obtain

$$\pi_t(\theta) \propto \exp\left(-\frac{t_2}{2\sigma_0^2}(\theta - t_1/t_2)^2\right).$$

Thus, $\pi_t(\theta)$ is defined only for $t_2 > 0$ and all t_1 and is the $N(t_1/t_2, \sigma_0^2/t_2)$ density. Our conjugate family, therefore, consists of all $N(\eta_0, \tau_0^2)$ distributions where η_0 varies freely and τ_0^2 is positive.

Building hierarchical models

Homework *In the hierarchical Bayesian modeling, randomize parameters of the prior distribution and put some hierarchical prior. Since the exponential family of distribution has a conjugate exponential prior, one can utilize this property to build convenient hierarchical priors. Formalize this approach.*

Homework *Use example from the previous slides and build a one-level hierarchical structure of priors. For this model, take (simulate?) some realistic data, and illustrate the difference in the posterior when one uses a non-hierarchical prior vs. hierarchical prior.*

Homework *Provide a similar discussion for an exponential family that is different from normal distributions.*

Outline

1 Conjugate families

2 Bayesian formulations

Credibility intervals and regions

- In the Bayesian framework we define bounds and intervals, called level $1 - \alpha$ credible bounds and intervals, that determine subsets of the parameter space that are assigned probability at least $1 - \alpha$ by the posterior distribution of the parameter θ given the data x .
- In the case of a normal prior $\pi(\theta)$ and normal model $p(x|\theta)$, the level $(1 - \alpha)$ credible interval is similar to the frequentist interval except it is pulled in the direction μ_0 of the prior mean and it is little narrower.
- However, the interpretations are different: In the frequentist confidence interval, the probability of coverage is computed with the data X random and θ fixed, whereas in the **Bayesian credible interval**, the probability of coverage is computed with $X = x$ fixed and θ random with probability distribution $\Pi(\theta|X = x)$.
- The Bayesian credibility interval is, in fact, the **prediction interval** for the **unobserved** θ , i.e. if one would repeat sampling from the full model for θ and x , then in $1 - \alpha$ 100% cases the Bayesian credibility interval would include θ (that would be changing from sample to sample).

Credibility intervals and regions

- Let $\Pi(\cdot|x)$ denote the posterior probability distribution of θ given $X = x$, then $\underline{\theta}$ and $\bar{\theta}$ are level $1 - \alpha$ lower and upper credible bounds for θ if they respectively satisfy

$$\Pi(\underline{\theta} \leq \theta | x) \geq 1 - \alpha, \quad \Pi(\theta \leq \bar{\theta} | x) \geq 1 - \alpha$$

- Turning to Bayesian credible intervals and regions, it is natural to consider the collection of θ that is “most likely” under the distribution $\Pi(\theta|x)$.

$$C_k = \{\theta : \pi(\theta|x) \geq k\}$$

is called a level $1 - \alpha$ **credible region** for θ if $\Pi(C_k|x) \geq 1 - \alpha$.

Homework Show that there can be different from C_k credibility regions. Consider a specific example in which you can provide different sensible credibility intervals from C_k . Which of these credibility regions has the smaller volume? **HINT:** Consider the case of asymmetric posterior distributions and take symmetric credibility regions vs C_k that have the same credibility level.

Difficult problem

Homework Do you think that there is a result about the optimality of C_k . Either give an counter example or give a proof:)