Bayesian Formulation

November 23, 2023

Bayesian Formulation

Prior distributions for exponential families

- We have seen that beta prior distributions for the probability of success in Bernoulli trials leads to the conjugate families of priors, families to which the posterior after sampling also belongs.
- Suppose $X_1, ..., X_n$ is a sample from the *k*-parameter exponential family, and, as we always do in the Bayesian context, write $p(x|\theta)$ for $p(x, \theta)$.
- Then

$$\boldsymbol{p}(\mathbf{x}|\boldsymbol{\theta}) = \prod_{i=1}^{n} h(x_i) \exp\left(\sum_{j=1}^{k} \eta_j(\boldsymbol{\theta}) \sum_{i=1}^{n} T_j(x_i) - nB(\boldsymbol{\theta})\right)$$

where θ is *k*-dimensional.

• A conjugate exponential family is obtained from by letting $t_j = \sum_{i=1}^{n} T_j(x_i), j = 1, ..., k$ be "parameters" and treating θ as the 'variables of interest'.

Conjugate exponential family

• We have for
$$\mathbf{t} = (t_1, \dots, t_{k+1}) \in \Omega$$

$$\omega(\mathbf{t}) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \exp\left(\sum_{j=1}^{k} t_{j} \eta_{j}(\boldsymbol{\theta}) - t_{k+1} B(\boldsymbol{\theta})\right) d\theta_{1} \dots d\theta_{k}$$

where Ω is the set of **t** for which the above is finite.

Theorem

The (k + 1)-parameter exponential family given by

$$\pi_{\mathbf{t}}(\boldsymbol{\theta}) = \exp\left(\sum_{j=1}^{k} \eta_j(\boldsymbol{\theta}) t_j - t_{k+1} \boldsymbol{B}(\boldsymbol{\theta}) - \log \omega(\mathbf{t})\right)$$

where $\mathbf{t} \in \Omega$ is a conjugate prior to the exponential family $p(\mathbf{x}|\theta)$.

The proof

$$\pi(\boldsymbol{\theta}|\mathbf{x}) \propto p(\mathbf{x}|\boldsymbol{\theta})\pi_{\mathbf{t}}(\boldsymbol{\theta})$$
$$\propto \exp\left(\sum_{j=1}^{k} \eta_{j}(\boldsymbol{\theta}) \left(\sum_{i=1}^{n} T_{j}(x_{i}) + t_{j}\right) - (t_{k+1} + n)B(\boldsymbol{\theta})\right)$$
$$\propto \pi_{\mathbf{s}}(\boldsymbol{\theta}),$$

where

$$\mathbf{s} = (s_1, \ldots, s_{k+1}) = \left(\sum_{i=1}^n T_1(x_i) + t_1, \ldots, \sum_{i=1}^n T_k(x_i) + t_k, \right)$$

and \propto indicates that the two sides are proportional functions of θ .

Because two probability densities that are proportional must be equal, $\pi(\theta|\mathbf{x})$ is the member of the exponential family given by the above expression and our assertion follows.

- Note that we have an updating formula in the sense that as data $x_1, ..., x_n$ become available, the parameter **t** of the prior distribution is updated to $\mathbf{s} = (\mathbf{t} + \mathbf{a})$, where $\mathbf{a} = (\sum_{i=1}^{n} T_1(x_i), ..., \sum_{i=1}^{n} T_k(x_i))$.
- It is easy to check that the beta distributions are obtained as conjugate to the binomial in this way.

Example

Suppose $X_1, ..., X_n$ is a $N(\theta, \sigma_0^2)$ sample, where σ_0^2 is known and θ is unknown. To choose a prior distribution for θ , we consider the conjugate family of the model. For n = 1

$$p(x| heta) \propto \exp\left(rac{ heta x}{\sigma^2} - rac{ heta^2}{2\sigma_0^2}
ight)$$

This is a one-parameter exponential family with

$$T_1(x) = x, \ \eta_1(\theta) = \theta/(\sigma_0^2), \ B(\theta) = \theta^2/(2\sigma_0^2).$$

The conjugate two-parameter exponential family has density

$$\pi_t(\theta) = \exp(\theta t_1/\sigma_0^2 - \theta^2 t_2/(2\sigma_0^2) - \log \omega(t_1, t_2).$$

Upon completing the square we obtain

$$\pi_t(\theta) \propto \exp\left(-\frac{t_2}{2\sigma_0^2}(\theta-t_1/t_2)^2
ight).$$

Thus, $\pi_t(\theta)$ is defined only for $t_2 > 0$ and all t_1 and is the $N(t_1/t_2, \sigma_0^2/t_2)$ density. Our conjugate family, therefore, consists of all $N(\eta_0, \tau_0^2)$ distributions where η_0 varies freely and τ_0^2 is positive.

Credibility intervals and regions

- In the Bayesian framework we define bounds and intervals, called level 1α credible bounds and intervals, that determine subsets of the parameter space that are assigned probability at least 1α by the posterior distribution of the parameter θ given the data *x*.
- In the case of a normal prior $\pi(\theta)$ and normal model $p(x|\theta)$, the level (1α) credible interval is similar to the frequentist interval except it is pulled in the direction μ_0 of the prior mean and it is little narrower.
- However, the interpretations are different: In the frequentist confidence interval, the probability of coverage is computed with the data X random and θ fixed, whereas in the Bayesian credible interval, the probability of coverage is computed with X = x fixed and θ random with probability distribution $\Pi(\theta|X = x)$.
- The Bayesian credibility interval is, in fact, the prediction interval for the unobserved θ , i.e. if one would repeat sampling from the full model for θ and x, then in $1 \alpha 100\%$ cases the Bayesian credibility interval would include θ (that would be changing from sample to sample).

Credibility intervals and regions

Let Π(·|x) denote the posterior probability distribution of θ given X = x, then <u>θ</u> and <u>θ</u> are level 1 − α lower and upper credible bounds for θ if they respectively satisfy

$$\Pi(\underline{\theta} \leq \theta | \mathbf{x}) \geq 1 - \alpha, \ \Pi(\theta \leq \overline{\theta} | \mathbf{x}) \geq 1 - \alpha$$

 Turning to Bayesian credible intervals and regions, it is natural to consider the collection of θ that is "most likely" under the distribution Π(θ|x).

$$C_k = \{\theta : \pi(\theta|\mathbf{x}) \ge k\}$$

is called a level $1 - \alpha$ credible region for θ if $\Pi(C_k | x) \ge 1 - \alpha$.