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Motivation

@ When we perform estimation (or point estimation to be specific) as an outcome

we get a number that we know that it is not equal to the value one seeks, it only
estimates it.

@ But how well does it do that task?
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Confidence Intervals

Motivation

@ When we perform estimation (or point estimation to be specific) as an outcome
we get a number that we know that it is not equal to the value one seeks, it only
estimates it.

@ But how well does it do that task? One could provide the mean square error of
this estimator.

@ However, the MSE is a global entity that is independent of specific data and thus
of a specific value of the estimator (often referred to as an estimate).

@ One would like to know what one can report in relation to the data driven
estimate.

@ This is the subject of the confidence interval methodology which often is called
interval estimation in the oppose to point estimation.

@ We consider the problem of quoting a subset of 6 values which are in some
sense plausible in the light of the data x.

@ We need a procedure which for each possible value x € X’ specifies a subset
C(x) of © which we should quote as a set of plausible values for 6.
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Confidence Intervals

Definition

Definition

Let Xi,..., X, be a sample form a distribution that is parameterized by
some parameter 6. A random set C(Xj, ..., Xp) of possible values for ¢

that is computable from the sample is called a confidence region at
confidence level 1 — « if

Py(6 € C(Xi,...,.Xp)) =1—a.

If the set C(Xj, ..., Xn) has the form of an interval (L, U), then we call
it a confidence interval and we can write Py(L <6 < U) =1 — . If
the set is a one-sided unbounded interval (L, co) or (o0, U), than U, L
is called an upper, lower, respectively, confidence bound.

Note: L = L(x), U = U(x) are data dependent and parameter
independent, thus are data based statistics.
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Confidence Intervals

Interpretation

@ In the relation
PoL<o<U)=1-«

L = L(X) and U = U(X) are random but @ is not (unless you enter
the realm of Baysian statistics which we do not do in this part).

@ However, if the specific data X = x are given L = L(x), U = U(x)
are just numbers and not random at all. One should not interpret
the confidence interval as claiming that the parameter 6 is
between L(x) and U(x) with probability 1 — « as all three entities
0, L, and U are just numbers with no probability involved.

@ More appropriate is to think that if we repeat our experiment many
times and evaluate the confidence intervals each times, in
(1 — a)100% cases the true parameter will be inside the intervals.

@ We would not know in which ones, though.

@ Our reality ‘sits’ on only one of these intervals and we do not really
repeat this experiment.

e Confidence Regions March7,2025  5/26



Confidence Intervals

Graphical illustration

The following figure illustrate this well:

¢(0, mu)

T T
80 100

Confidence Regions

@ The red line represents
a true parameter
(unknown).

@ We are ‘sitting’ on one
of these intervals.

@ We do not know which
but we know its
endpoints.
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Confidence Intervals

Example
@ Suppose we are going to observe data x where x = (x1, X2, . .., Xn), and
X1, X2, . . ., Xp are the observed values of random variables Xi, X, . . ., X, which

are thought to be iid N(6, 1) for some unknown parameter 6 € (—oo, ) = ©.

@ Consider the subset C(x) = [x — 1.96/v/n, X + 1.96/+/n]. If we carry out an
infinite sequence of independent repetitions of the experiment, then we will get
an infinite sequence of x values and thereby an infinite sequence of subsets
C(x).

@ We might ask what proportion of this infinite sequence of subsets actually
contain the fixed but unknown value of 6?

@ This follows from the fact that X has a N(#, 1) density and so
Z = %% = \/n(X — 0) has a N(0, 1) density. Thus even though @ is unknown,

vl
we can calculate that P[|Z] < 1.96] = 0.95.
@ Thus 95% of the time Z will lie between —1.96 and +1.96. But

—1.96<Z<+1.96= —1.96 < V/n(X — ) < +1.96
= X-1.96/V/n<0<X+1.96/vVn=0c CX)
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Example, cont.

@ The proportion of the infinite sequence of subsets C(X) which will
actually include the fixed but unknown value of 8 is 0.95. For this reason
the set C(X) is called a 95% confidence region or confidence interval for
6.

Homework Consider the variables Y; = log X; for X;’s exponentially distributed
with the intensity 6. Construct the confidence intervals for § using Y;'s. J
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The pivotal quantity

The crucial step in the last example was finding the quantity Z = v/n(X — #) whose
value depended on the parameter of interest 6 but whose distribution was known to be
that of a standard normal variable. This leads to the following definition.

Definition (Pivotal Quantity)

A pivotal quantity for a parameter 6 is a random variable Q(X|6) whose value depends
both on (the data) X and on the value of the unknown parameter 6 but whose
distribution is explicitly known (parameter free).

The quantity Z in the example above is a pivotal quantity for 6.

Example

Let Xi, Xz, ..., X, be iid observations from a N(6, 02) density where 6 is known.

Define Q — i(x,- 0 /0% = iz,? where Z = (X, — 6) /o ~ N'(0, 1) density. Hence,
i= iz

Q has a x2 density and so is a pivotal quantity for o. If n = 20, then we can be 95%
sure that 9.591 < Q < 34.170 which is equivalent to a 95% Cl for variance o2

n n
D (X —0)%/34.170 < 0% < > (X — 0)7/9.591.

=1 i=1 1
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Finding a pivotal quantity
The following lemma provides a method of finding pivotal quantities in general.

Lemma

Let X be a random variable with cdf F. Consider the random variable
U= —2log [F(X)]. Then U has a x3 density. Consider the random variable
V = —2log[1 — F(X)]. Then V has a x3 density.

y
Proof.
Observe that, for a > 0,
PlU<a = P[F(X)>exp(—a/2)]
= 1-P[F(X) < exp(—a/2)]
= 1= PX<F (exp(—a/2))]
1— FIF " (exp(—a/2))]
1 —exp(—a/2).
Hence, U has density % exp (—a/2) which is the density of a x2 variable as required.
The corresponding proof for V is left as an exercise. E]J

= = = =yt
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Application

The above lemma has an immediate, and very important, application.

@ Suppose that we have data X1, Xz, . .., X, which are iid with density f(x|6) and
the corresponding cdf F(a|f). Fori=1,2,...,n, define U; = —2log[F(Xi|0)].

@ Then Uy, Uz, ..., U, are iid each having a x5 density. Hence Qi(X,0) = >, U;
has a x2, density and so is a pivotal quantity for 9. Another pivotal quantity ( also
having a x3, density ) is given by Qx(X,0) = 37, V; where
Vi = —2log[1 — F(X[0)].

Example

Consider Xi, Xo, . . ., Xp having the exponential distribution with the intensity 6. Suppose that we want to construct a 95%
confidence interval for 6. We need to find a pivotal quantity for 6. Since F(a|0) = 1 — exp (—6a),

Q(X,6) = —22|og[1 —exp (—6X)], Qa(X,0)
i=1

n
—ZZlog [exp (—6X))] = ZGZXi
i=1

are pivotal quantities for 6 having a x3,, density. Let A < B such that P[x3, < Al = P[x3, > B] = 0.025. Then

n A B
095 = PA< (X 0)<B=PA<20Y X <B|=Pl-—— <6< - ]
i=1 23 X 230 Xi

; A
and so the interval [2 PP AR Z"
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Confidence Intervals

Exercises

Homework In the example on the previous slide, we have used only the second
part of the lemma. Explain where is the difficulty in using the first part to
derive the explicit confidence interval. Is it possible to use Q, for numerical

construction of the confidence interval. Consider the case n = 1. )

Homework Consider the uniform variables X; on interval [0, §]. Ulilize the above
result to derive the confidence region for 6.

4
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The pivot for the ratio of the two variances

Suppose that we have data X, Xz, . .., X, which are iid observations from a N (6x, o%)
density and data Y3, Yz, ..., Yn which are iid observations from a NV(8y, 0%) density
where 0, 0y, ox, and oy are all unknown. Let A = 0% /0% and define
o & XL XP (m-1)
& (n=1) XY -Y)p?

Let

n m
Wi =D (Xi— X)?/ok, Wy =1 (Y- V)/ob.

i=1 j=1
Then, Wx has a x2_, density and Wy has a x2,_; density. Hence, by definition of
F-distribution (F stands for Fisher),
Wx/(n—1) _ F*
Wy/(m—1) = X
has an F density with n — 1 and m — 1 degrees of freedom and so is a pivotal quantity
for A. Suppose that n = 25 and m = 13. Then we can be 95% sure that
0.39 < Q < 3.02 which is equivalent to

F* F*

am AL —.
3.02 — —0.39

e Confidence Regions March7,2025  13/26

Q=



Approximate confidence intervals

In many situation, we have the limiting distribution of certain functions of the data,
where the limit is taken with respect to the sample size n. Many of the results on this
will be given later on. To illustrate how this can work for construction confidence
intervals let us consider the well-known Central Limit Theorem. It says that under the
second moment assumptions, the following holds

lim Vn(X — p)/o < N(0,1).
n— oo
Such a limiting result can be used to obtain an approximate pivot for approximate

confidence intervals for the probability of success in n Bernoulli trials.

@ If X1, ..., X, are the indicators of n Bernoulli trials with probability of success 6,
then X is the MLE of 9. There is no natural “exact” pivot based on X and 6 .
However, by the De Moivre—Laplace (CLT for Bernoulli) theorem,

V(X — 6)/,/6(1 — 0) has approximately N(0, 1) distribution. If we use this
function as an apprOX|mate pivot we obtain that the following occurs with
probability approximately equal to 1 — «.

—Zi_ay2 VDX = 0)//0(1 —0) < zi_uy2
The above inequalities can be solve with respect to ¢ leading a confidence
interval (8, 9) for 6, see the formula 4.4.3 in the text.
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Confidence Regions

Multidimensional parameters

@ If one consider multidimensional parameters, then the concept of a confidence
region may result in many shapes of the sets.
@ These shapes may be more difficult to interpret, and interpretation was the main
benefit of the confidence intervals.
@ Here we point out on the two shapes that are commonly used in the multivariate
case:
@ multidimensional rectangles — most commonly used ones and the easiest
to interpret.
@ multidimensional ellipsoides — typically obtained for the confidence regions
for the multivariate means with use of the normal approximation.
@ mixture of the above — some parameters maybe easier to estimate by
confidence intervals, for example variances, while the means by ellipsoids.
@ bands around functions if the parameters are functions — non-parametric
statistics.
@ Due to the diversity of possible cases, we limit ourselves to general concepts
and very simple examples.
@ It should be also mentions that it may be difficult to obtain the confidence regions
with exactly specified confidence bands, often we will be satisfied with the
conservative confidence regions Py(6 € C(X)) > 1 — .
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Confidence Regions

Multidimensional parameters

@ We can extend the notion of a confidence interval for
one-dimensional functions q(¢) to r-dimensional vectors

q(0) = (G1(9), - -, ar(0))-
@ Suppose gj(X) <q;(X),j=1,...,r. Then the r-dimensional

random rectangle /(X) = [q, (X ) 1(X)] x - x [q(X),q,(X)] is
said to be a level (1 — «) confldence region, |f the probablllty that it
covers the unknown but fixed true (g1(9), ..., qr(0)) is at least
1—a.

@ We write this as
Po(q(0) € (X)) > 1 —a.
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From 1D to multiD

@ Coordinatewise independence: If the pairs gj(X) <q(X),j=1,...,rare

independent and they yield coordinatewise the confidence level 1 — ¢,

respectively, then
,

Po(a(6) € 1(X)) = [T(1 — o).

j=1
Moreover, if we choose a; =1 — (1 — )", j=1,...,r, then I(X) has the
confidence level 1 — a.

@ Bonferoni’s inequality: Without assuming independence, we have

Po(q(0) € (X)) > 13" Po(qi & (X)) =1- a.
j=1 j=1

Proof.

=t

P (hA,) =1-P (OAf) > 1 —iP(Af)
j=1 j=1

O

= g = e
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Confidence Regions

Application to the mean/variance estimation of normal
parameters

Example

Let X1, Xz, . .., X» be iid observations from a N(8, o2) density. It is well-known that )_(
and S? are |ndependent statistics with the distributions X(u, o?/n) and (n — 1)o?x2_;.
Moreover, v/n(X — p)/o has Student-t distribution with n — 1 degrees of freedom.
Thus the individual confidence intervals at levels 1 — a/2 are /j(X) = X + Sty 11_a/a
and b(X) = [(n—1)S%/X5_11_aya (N —1)8?/X5_1 o/4] The rectangle h(X) x k(X)
will be the joint confidence region at level 1 — o by Bonferroni’s inequality.

In this case, one can get also exact confidence region but not in the shape of
rectangle. In fact it will be in the shape of the trapezoid if 1 and o (instead of ¢°) are
considered to be the parameters of interest. It follows from the independence of X and
S? and the following exact inequalities

< vn—1 vn—1
X Z1—ay X+Z17aoi7 7S§0—§78
f VN Xn—11—a,/4 Xn—1,,a4 /4

which are satisfied with the probability (1 — ap)(1 — «1). One can choose ag and a4
arbitrarily so that (1 — a)(1 —a1) =1 —a, forexample ag = a1 =1 — V1 — . J
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The mean for multivariate normal

Finally, let us consider the confidence in the shape of a multidimensional ellipsoid.

Example

Let Xi, Xo, ..., X, be iid observations from a multivariate r dimensional normal density
N(6, X), with a known covariance matrix . Then the pivot is

VnEA(X - 6)

which has the standard multivariate normal distribution and thus belongs to the
k-dimensional ball centered at zero of the radius x«,1—. with probability 1 — «. Denote
this ball by By(xk,1—«). Then with the same probability

0 € X+ X"2By(Xk1-ao/VN)

which makes the right hand side the confidence region at 1 — « level. It is clear(?) that
this region is an r-dimensional ellipsoid.

This example can be extended to the similar situation as in the previous slide, when
the covariance is not known to produce the joint region for 6 and . As we see, the
increased complexity of the parameters leads to more complex geometry of those
regions.

v

= g = AL
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Confidence Regions

The mean and covariance for multivariate normal

The example can be extended to the similar situation as in the previous slide, when
the covariance is not known to produce the joint region for p, X .

@ Based on observations from the multivariate normal distributions the likelihood
for u, X is
_ 1 IS - ) (- p)
L(“’v Z) - (27r)"p/2|2|”/2 e 2=
@ Maximum likelihood estimates of u and X are obtained by maximizing the
likelihood function.

@ The maximum likelihood estimates of
p and X are given by

a=X
n—1

s = S=S5,
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Confidence Regions

Wishart distribution and confidence region

@ The distribution of
m
Z X/X/'T
k=1
where X; ~ Np(0, X) is called a Wishart distribution with m degrees of freedom

@ We use the notation W,(m, X) for a Wishart distribution with m degrees of
freedom

@ Itis a multivariate generalization of the chi-square distribution.
It holds that if samples are from multivariate normal distributions

® X~ Np(p, $X)

@ (n—1)S~ Wy(n—1,X)

@ X and S are independent

Homework Based on this information, could you devise the joint confidence
region for u and X ? A general idea would be sufficient. J

As we see, the increased complexity of the parameters leads to more complex
geometry of those regions.
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Duality between Confidence Regions and Tests

Tests vs Cls: the main idea of duality

@ Confidence regions are random subsets of the parameter space
that contain the true parameter with probability at least 1 — «.

@ Acceptance regions of statistical tests are, for a given hypothesis
H, subsets of the sample space with probability of accepting H at
least 1 — a when H is true.

@ We shall establish a duality between confidence regions and
acceptance regions for families of hypotheses.

@ The null hypothesis must be about the same parameter for which
the confidence regions are built.
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Duality between Confidence Regions and Tests

Examples

@ Let consider the normal distribution case with a known variance
and a test H : u = ug with an arbitrary version of the alternative.
@ Then if we reject this hypothesis when

Ho ¢ [)_( —0Z4 —a/2/ﬁ7)_( + 02z —04/2/\/5]

than it has the significance level a.

@ But it may be equivalently said that we reject H if the parameter
does not belong to the confidence interval at the level 1 — a.

@ The argument is almost obvious. If the parameter does not belong
to the confidence region at the level 1 — a while it is assumed to
be the true parameter than it happens with probability «.

@ If we base our rejection based on not belonging to the confidence
region we obtain a test with corresponding significance a.

@ Since there may be many confidence regions for the same
parameters thus there are many tests and different regions can be
chosen depending what is in the alternative,
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The duality theorem

Theorem

If C(X) a confidence region for a parameter 6 at the level 1 — «, then
for a given 0, a test that rejects H when 6y ¢ C(X) is at a significance
level .

Conversely, if Ry, defines a rejection region for T in testing H : 6 = g
at the significance level o for each 6y € ©, then the set I(X) of all 6 for
which T ¢ Ry defines the confidence region at level 1 — a.

Proof.

The first part was argued at the previous slide.

The second part follows because for fixed while arbitrary 6,

Pa, (60 € 1(X)) is simply the probability in the case when H claims 6, as

truth to have T ¢ Ry, i.e. not rejecting H which happens with
probability 1 — a. O

y

= = = = =
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