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Confidence Intervals

Motivation

When we perform estimation (or point estimation to be specific) as an outcome
we get a number that we know that it is not equal to the value one seeks, it only
estimates it.

But how well does it do that task?

One could provide the mean square error of
this estimator.

However, the MSE is a global entity that is independent of specific data and thus
of a specific value of the estimator (often referred to as an estimate).

One would like to know what one can report in relation to the data driven
estimate.

This is the subject of the confidence interval methodology which often is called
interval estimation in the oppose to point estimation.

We consider the problem of quoting a subset of θ values which are in some
sense plausible in the light of the data x.

We need a procedure which for each possible value x ∈ X specifies a subset
C(x) of Θ which we should quote as a set of plausible values for θ.
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Confidence Intervals

Definition

Definition
Let X1, . . . ,Xn be a sample form a distribution that is parameterized by
some parameter θ. A random set C(X1, . . . ,Xn) of possible values for θ
that is computable from the sample is called a confidence region at
confidence level 1− α if

Pθ(θ ∈ C(X1, . . . ,Xn)) = 1− α.

If the set C(X1, . . . ,Xn) has the form of an interval (L,U), then we call
it a confidence interval and we can write Pθ(L ≤ θ ≤ U) = 1− α. If
the set is a one-sided unbounded interval (L,∞) or (∞,U), than U, L
is called an upper, lower, respectively, confidence bound.

Note: L = L(x), U = U(x) are data dependent and parameter
independent, thus are data based statistics.

Confidence Regions March 7, 2025 4 / 26



Confidence Intervals

Interpretation

In the relation
Pθ(L ≤ θ ≤ U) = 1− α

L = L(X) and U = U(X) are random but θ is not (unless you enter
the realm of Baysian statistics which we do not do in this part).
However, if the specific data X = x are given L = L(x), U = U(x)
are just numbers and not random at all. One should not interpret
the confidence interval as claiming that the parameter θ is
between L(x) and U(x) with probability 1− α as all three entities
θ, L, and U are just numbers with no probability involved.
More appropriate is to think that if we repeat our experiment many
times and evaluate the confidence intervals each times, in
(1− α)100% cases the true parameter will be inside the intervals.
We would not know in which ones, though.
Our reality ‘sits’ on only one of these intervals and we do not really
repeat this experiment.
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Confidence Intervals

Graphical illustration

The following figure illustrate this well:
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The red line represents
a true parameter
(unknown).
We are ‘sitting’ on one
of these intervals.
We do not know which
but we know its
endpoints.
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Confidence Intervals

Example

Suppose we are going to observe data x where x = (x1, x2, . . . , xn), and
x1, x2, . . . , xn are the observed values of random variables X1,X2, . . . ,Xn which
are thought to be iid N(θ, 1) for some unknown parameter θ ∈ (−∞,∞) = Θ.

Consider the subset C(x) = [x̄ − 1.96/
√

n, x̄ + 1.96/
√

n]. If we carry out an
infinite sequence of independent repetitions of the experiment, then we will get
an infinite sequence of x values and thereby an infinite sequence of subsets
C(x).

We might ask what proportion of this infinite sequence of subsets actually
contain the fixed but unknown value of θ?

This follows from the fact that X̄ has a N(θ, 1
n ) density and so

Z = X̄−θ
1√
n

=
√

n(X̄ − θ) has a N(0, 1) density. Thus even though θ is unknown,

we can calculate that P[|Z | ≤ 1.96] = 0.95.

Thus 95% of the time Z will lie between −1.96 and +1.96. But

−1.96 ≤ Z ≤ +1.96⇒ −1.96 ≤
√

n(X̄ − θ) ≤ +1.96

⇒ X̄ − 1.96/
√

n ≤ θ ≤ X̄ + 1.96/
√

n⇒ θ ∈ C(X)
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Confidence Intervals

Example, cont.

The proportion of the infinite sequence of subsets C(X) which will
actually include the fixed but unknown value of θ is 0.95. For this reason
the set C(X) is called a 95% confidence region or confidence interval for
θ.

Homework Consider the variables Yi = log Xi for Xi ’s exponentially distributed
with the intensity θ. Construct the confidence intervals for θ using Yi ’s.
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Confidence Intervals

The pivotal quantity
The crucial step in the last example was finding the quantity Z =

√
n(X̄ − θ) whose

value depended on the parameter of interest θ but whose distribution was known to be
that of a standard normal variable. This leads to the following definition.

Definition (Pivotal Quantity)

A pivotal quantity for a parameter θ is a random variable Q(X|θ) whose value depends
both on (the data) X and on the value of the unknown parameter θ but whose
distribution is explicitly known (parameter free).

The quantity Z in the example above is a pivotal quantity for θ.

Example

Let X1,X2, . . . ,Xn be iid observations from a N(θ, σ2) density where θ is known.

Define Q =
n∑

i=1
(Xi − θ)2/σ2 =

n∑
i=1

Z 2
i where Zi = (Xi − θ)/σ ∼ N (0, 1) density. Hence,

Q has a χ2
n density and so is a pivotal quantity for σ. If n = 20, then we can be 95%

sure that 9.591 ≤ Q ≤ 34.170 which is equivalent to a 95% CI for variance σ2

n∑
i=1

(Xi − θ)2/34.170 ≤ σ2 ≤
n∑

i=1

(Xi − θ)2/9.591.
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Confidence Intervals

Finding a pivotal quantity
The following lemma provides a method of finding pivotal quantities in general.

Lemma

Let X be a random variable with cdf F . Consider the random variable
U = −2 log [F (X )]. Then U has a χ2

2 density. Consider the random variable
V = −2 log [1− F (X )]. Then V has a χ2

2 density.

Proof.

Observe that, for a ≥ 0,

P[U ≤ a] = P[F (X ) ≥ exp (−a/2)]

= 1− P[F (X ) ≤ exp (−a/2)]

= 1− P[X ≤ F−1(exp (−a/2))]

= 1− F [F−1(exp (−a/2))]

= 1− exp (−a/2).

Hence, U has density 1
2 exp (−a/2) which is the density of a χ2

2 variable as required.
The corresponding proof for V is left as an exercise.
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Confidence Intervals

Application
The above lemma has an immediate, and very important, application.

Suppose that we have data X1,X2, . . . ,Xn which are iid with density f (x |θ) and
the corresponding cdf F (a|θ). For i = 1, 2, . . . , n, define Ui = −2 log[F (Xi |θ)].
Then U1,U2, . . . ,Un are iid each having a χ2

2 density. Hence Q1(X, θ) =
∑n

i=1 Ui

has a χ2
2n density and so is a pivotal quantity for θ. Another pivotal quantity ( also

having a χ2
2n density ) is given by Q2(X, θ) =

∑n
i=1 Vi where

Vi = −2 log[1− F (Xi |θ)].

Example
Consider X1, X2, . . . , Xn having the exponential distribution with the intensity θ. Suppose that we want to construct a 95%
confidence interval for θ. We need to find a pivotal quantity for θ. Since F (a|θ) = 1− exp (−θa),

Q1(X, θ) = −2
n∑

i=1

log [1− exp (−θXi )], Q2(X, θ) = −2
n∑

i=1

log [exp (−θXi )] = 2θ
n∑

i=1

Xi

are pivotal quantities for θ having a χ2
2n density. Let A < B such that P[χ2

2n < A] = P[χ2
2n > B] = 0.025. Then

0.95 = P[A ≤ Q2(X, θ) ≤ B] = P[A ≤ 2θ
n∑

i=1

Xi ≤ B] = P[
A

2
∑n

i=1 Xi
≤ θ ≤

B

2
∑n

i=1 Xi
]

and so the interval [ A
2
∑n

i=1 Xi
, B

2
∑n

i=1 Xi
] is a 95% confidence interval for θ.
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Confidence Intervals

Exercises

Homework In the example on the previous slide, we have used only the second
part of the lemma. Explain where is the difficulty in using the first part to
derive the explicit confidence interval. Is it possible to use Q1 for numerical
construction of the confidence interval. Consider the case n = 1.

Homework Consider the uniform variables Xi on interval [0, θ]. Utilize the above
result to derive the confidence region for θ.
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Confidence Intervals

The pivot for the ratio of the two variances
Suppose that we have data X1,X2, . . . ,Xn which are iid observations from a N (θX , σ

2
X )

density and data Y1,Y2, . . . ,Ym which are iid observations from a N (θY , σ
2
Y ) density

where θX , θY , σX , and σY are all unknown. Let λ = σ2
X/σ

2
Y and define

F∗ =
ŝ2

X

ŝ2
Y

=

∑n
i=1(Xi − X̄ )2

(n − 1)

(m − 1)∑m
j=1(Yj − Ȳ )2

.

Let

WX =
n∑

i=1

(Xi − X̄ )2/σ2
X , WY =

m∑
j=1

(Yj − Ȳ )2/σ2
Y .

Then, WX has a χ2
n−1 density and WY has a χ2

m−1 density. Hence, by definition of
F -distribution (F stands for Fisher),

Q =
WX/(n − 1)

WY/(m − 1)
≡ F∗

λ

has an F density with n − 1 and m − 1 degrees of freedom and so is a pivotal quantity
for λ. Suppose that n = 25 and m = 13. Then we can be 95% sure that
0.39 ≤ Q ≤ 3.02 which is equivalent to

F∗

3.02
≤ λ ≤ F∗

0.39
.
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Confidence Intervals

Approximate confidence intervals
In many situation, we have the limiting distribution of certain functions of the data,
where the limit is taken with respect to the sample size n. Many of the results on this
will be given later on. To illustrate how this can work for construction confidence
intervals let us consider the well-known Central Limit Theorem. It says that under the
second moment assumptions, the following holds

lim
n→∞

√
n(X̄ − µ)/σ

d
= N(0, 1).

Such a limiting result can be used to obtain an approximate pivot for approximate
confidence intervals for the probability of success in n Bernoulli trials.

If X1, ...,Xn are the indicators of n Bernoulli trials with probability of success θ,
then X is the MLE of θ. There is no natural “exact” pivot based on X̄ and θ .
However, by the De Moivre–Laplace (CLT for Bernoulli) theorem,√

n(X̄ − θ)/
√
θ(1− θ) has approximately N(0, 1) distribution. If we use this

function as an approximate pivot we obtain that the following occurs with
probability approximately equal to 1− α.

−z1−α/2 ≤
√

n(X̄ − θ)/
√
θ(1− θ) ≤ z1−α/2

The above inequalities can be solve with respect to θ leading a confidence
interval (θ, θ̄) for θ, see the formula 4.4.3 in the text.
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Confidence Regions

Multidimensional parameters
If one consider multidimensional parameters, then the concept of a confidence
region may result in many shapes of the sets.
These shapes may be more difficult to interpret, and interpretation was the main
benefit of the confidence intervals.
Here we point out on the two shapes that are commonly used in the multivariate
case:

multidimensional rectangles – most commonly used ones and the easiest
to interpret.
multidimensional ellipsoides – typically obtained for the confidence regions
for the multivariate means with use of the normal approximation.
mixture of the above – some parameters maybe easier to estimate by
confidence intervals, for example variances, while the means by ellipsoids.
bands around functions if the parameters are functions – non-parametric
statistics.

Due to the diversity of possible cases, we limit ourselves to general concepts
and very simple examples.
It should be also mentions that it may be difficult to obtain the confidence regions
with exactly specified confidence bands, often we will be satisfied with the
conservative confidence regions Pθ(θ ∈ C(X)) > 1− α.
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Confidence Regions

Multidimensional parameters

We can extend the notion of a confidence interval for
one-dimensional functions q(θ) to r -dimensional vectors
q(θ) = (q1(θ), . . . ,qr (θ)).
Suppose q

j
(X ) ≤ qj(X ), j = 1, . . . , r . Then the r -dimensional

random rectangle I(X ) = [q
1
(X ),q1(X )]× · · · × [q

r
(X ),qr (X )] is

said to be a level (1− α) confidence region, if the probability that it
covers the unknown but fixed true (q1(θ), . . . ,qr (θ)) is at least
1− α.
We write this as

Pθ(q(θ) ∈ I(X )) ≥ 1− α.
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Confidence Regions

From 1D to multiD
Coordinatewise independence: If the pairs q

j
(X ) ≤ q j (X ), j = 1, . . . , r are

independent and they yield coordinatewise the confidence level 1− αj ,
respectively, then

Pθ(q(θ) ∈ I(X )) =
r∏

j=1

(1− αj ).

Moreover, if we choose αj = 1− (1− α)1/r , j = 1, . . . , r , then I(X ) has the
confidence level 1− α.
Bonferoni’s inequality: Without assuming independence, we have

Pθ(q(θ) ∈ I(X )) ≥ 1−
r∑

j=1

Pθ(qj /∈ Ij (X )) = 1−
r∑

j=1

αj .

Proof.

P

 r⋂
j=1

Aj

 = 1− P

 r⋃
j=1

Ac
j

 ≥ 1−
r∑

j=1

P(Ac
j )
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Confidence Regions

Application to the mean/variance estimation of normal
parameters

Example

Let X1,X2, . . . ,Xn be iid observations from a N(θ, σ2) density. It is well-known that X̄
and S2 are independent statistics with the distributions X (µ, σ2/n) and (n − 1)σ2χ2

n−1.
Moreover,

√
n(X̄ − µ)/σ has Student-t distribution with n − 1 degrees of freedom.

Thus the individual confidence intervals at levels 1− α/2 are I1(X ) = X̄ ± S tn−1,1−α/4

and I2(X ) = [(n − 1)S2/χ2
n−1,1−α/4, (n − 1)S2/χ2

n−1,α/4] The rectangle I1(X )× I2(X )
will be the joint confidence region at level 1− α by Bonferroni’s inequality.

In this case, one can get also exact confidence region but not in the shape of
rectangle. In fact it will be in the shape of the trapezoid if µ and σ (instead of σ2) are
considered to be the parameters of interest. It follows from the independence of X̄ and
S2 and the following exact inequalities

X̄ − z1−α0

σ√
n
≤ µ ≤ X̄ + z1−α0

σ√
n
,

√
n − 1S

χn−1,1−α1/4
≤ σ ≤

√
n − 1S

χn−1,,α1/4

which are satisfied with the probability (1− α0)(1− α1). One can choose α0 and α1

arbitrarily so that (1− α0)(1− α1) = 1− α, for example α0 = α1 = 1−
√

1− α.
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Confidence Regions

The mean for multivariate normal
Finally, let us consider the confidence in the shape of a multidimensional ellipsoid.

Example

Let X1,X2, . . . ,Xn be iid observations from a multivariate r dimensional normal density
N(θ,Σ), with a known covariance matrix Σ. Then the pivot is

√
nΣ−1/2(X̄ − θ)

which has the standard multivariate normal distribution and thus belongs to the
k -dimensional ball centered at zero of the radius χk,1−α with probability 1− α. Denote
this ball by Bd (χk,1−α). Then with the same probability

θ ∈ X̄ + Σ1/2Bd (χk,1−α0/
√

n)

which makes the right hand side the confidence region at 1− α level. It is clear(?) that
this region is an r -dimensional ellipsoid.
This example can be extended to the similar situation as in the previous slide, when
the covariance is not known to produce the joint region for θ and Σ. As we see, the
increased complexity of the parameters leads to more complex geometry of those
regions.
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Confidence Regions

The mean and covariance for multivariate normal

The example can be extended to the similar situation as in the previous slide, when
the covariance is not known to produce the joint region for µ,Σ .

Based on observations from the multivariate normal distributions the likelihood
for µ,Σ is

L(µ,Σ) =
1

(2π)np/2|Σ|n/2 e−
1
2
∑n

i=1(xi−µ)T Σ−1(xi−µ)

Maximum likelihood estimates of µ and Σ are obtained by maximizing the
likelihood function.

The maximum likelihood estimates of
µ and Σ are given by

µ̂ = X̄

Σ̂ =
n − 1

n
S = Sn
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Confidence Regions

Wishart distribution and confidence region

The distribution of
m∑

k=1

XjXT
j

where Xj ∼ Np(0,Σ) is called a Wishart distribution with m degrees of freedom

We use the notation Wp(m,Σ) for a Wishart distribution with m degrees of
freedom

It is a multivariate generalization of the chi-square distribution.

It holds that if samples are from multivariate normal distributions

X̄ ∼ Np(µ, 1
nΣ)

(n − 1)S ∼ Wp(n − 1,Σ)

X̄ and S are independent

Homework Based on this information, could you devise the joint confidence
region for µ and Σ? A general idea would be sufficient.

As we see, the increased complexity of the parameters leads to more complex
geometry of those regions.
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Duality between Confidence Regions and Tests

Tests vs CIs: the main idea of duality

Confidence regions are random subsets of the parameter space
that contain the true parameter with probability at least 1− α.
Acceptance regions of statistical tests are, for a given hypothesis
H, subsets of the sample space with probability of accepting H at
least 1− α when H is true.
We shall establish a duality between confidence regions and
acceptance regions for families of hypotheses.
The null hypothesis must be about the same parameter for which
the confidence regions are built.
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Duality between Confidence Regions and Tests

Examples

Let consider the normal distribution case with a known variance
and a test H : µ = µ0 with an arbitrary version of the alternative.
Then if we reject this hypothesis when

µ0 /∈ [x̄ − σz1−α/2/
√

n, x̄ + σz1−α/2/
√

n]

than it has the significance level α.
But it may be equivalently said that we reject H if the parameter
does not belong to the confidence interval at the level 1− α.
The argument is almost obvious. If the parameter does not belong
to the confidence region at the level 1− α while it is assumed to
be the true parameter than it happens with probability α.
If we base our rejection based on not belonging to the confidence
region we obtain a test with corresponding significance α.
Since there may be many confidence regions for the same
parameters thus there are many tests and different regions can be
chosen depending what is in the alternative.
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Duality between Confidence Regions and Tests

The duality theorem

Theorem
If C(X ) a confidence region for a parameter θ at the level 1− α, then
for a given θ0 a test that rejects H when θ0 /∈ C(X ) is at a significance
level α.
Conversely, if Rθ0 defines a rejection region for T in testing H : θ = θ0
at the significance level α for each θ0 ∈ Θ, then the set I(X ) of all θ for
which T /∈ Rθ defines the confidence region at level 1− α.

Proof.
The first part was argued at the previous slide.
The second part follows because for fixed while arbitrary θ0
Pθ0(θ0 ∈ I(X )) is simply the probability in the case when H claims θ0 as
truth to have T /∈ Rθ0 , i.e. not rejecting H which happens with
probability 1− α.
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