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Introduction

Motivation

Suppose we have discovered a new drug that we believe will increase the rate of
recovery from some disease over the recovery rate when an old established drug is
applied.

Our hypothesis is against the complementary (alternative) hypothesis that the
new drug does not improve on the old drug.

Suppose that we know from past experience that a fixed proportion θ0 = 0.3
recover from the disease with the old drug.

What the complementary hypothesis means is that the chance that an individual
randomly selected from the ill population will recover is the same or worse with
the new drug than with the old drug.

To investigate this question we would have to perform a random experiment and
use the data in the support of one or the other claim.

Most simply, we would sample n patients, administer the new drug, and then
base our decision on the observed sample X = (X1, ...,Xn), where Xi is 1 if the
i th patient recovers and 0 otherwise.
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Introduction

Two hypotheses

Suppose we observe S =
∑n

i=1 Xi , the number of recoveries among the n
randomly selected patients who have been administered the new drug.

If we let θ be the probability that a patient to whom the new drug is administered
recovers, then S has a B(n, θ) distribution.

If we suppose the new drug is at least as effective as the old, then Θ = [0, 1],
where θ0 is the probability of recovery using the old drug.

Now, one of the hypotheses is θ ∈ [0, θ0] and the other is that θ ∈ (θ0, 1].

As it will be seen from our methodology, there is a need to differentiate the two
hypotheses by deciding for which of the two we need a strong evidence from the
data.

This decision is subjective but it is very consequential.

In the example, one could argue that the strong evidence from the data is
needed for the claim that the new drug is better than the old one (one does not
want to start a new production of a drug if it could turn out that the drug is not
better than the old one).
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Introduction

The null versus alternative

The hypothesis for which we want a strong evidence to go along with it is called
the alternative hypothesis and denoted by Ha, K or H1.

The other hypothesis is referred to as the null hypothesis and is denoted by H or
H0.

In the text, the convention of H vs. K has been chosen.

We write H : θ ≤ θ0 vs K : θ > θ0.

After deciding on what we want to test for, and which of the hypotheses seeks a
strong support from the data, we need to decide how to use the data for the
purpose.

In this example, it is reasonable to reject H is S is “much” bigger than what would
be expected by chance if H is true.

We base our decision if S > k , or not, for some value of k to be yet decided.
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Introduction

Formulation of the problem

Suppose that we are going to observe the value of a random vector X. Let X
denote the set of possible values that X can take and, for x ∈ X , let p(x|θ)
denote the density (or probability mass function) of X, where the parameter θ is
some unknown element of the set Θ.
The null hypothesis specifies that θ belongs to some subset Θ0 of Θ. The
question arises as to whether the observed data x is consistent with the
hypothesis that θ ∈ Θ0, often written as H : θ ∈ Θ0.
The null hypothesis is contrasted with the so-called alternative hypothesis
K : θ ∈ Θ1, where Θ0 ∩Θ1 = ∅ for which we need a strong evidence from the
data if we want to go along with it.
The testing hypothesis is aiming at finding in the data x enough evidence to
reject the null hypothesis:

H : θ ∈ Θ0,

in favor of the alternative hypothesis

K : θ ∈ Θ1.

Due to the focus on control of the error rate for rejecting H, the set up in the role
of the hypotheses is not exchangeable.
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The Neyman-Pearson Framework

Two types of error
In a hypothesis testing situation, two types of error are possible.

The first type of error is to reject the null hypothesis H : θ ∈ Θ0 as being
inconsistent with the observed data x when, in fact, θ ∈ Θ0 i.e. when, in fact, the
null hypothesis happens to be true. This is referred to as Type I Error.
The second type of error is to fail to reject the null hypothesis1 H : θ ∈ Θ0 as
being inconsistent with the observed data x when, in fact, θ ∈ Θ1 i.e. when, in
fact, the null hypothesis happens to be false. This is referred to as Type II Error.

The goal is to propose a procedure that for given data X = x would automatically point
which of the hypothesis is more favorable.

It must be done in such a way that chances of making Type I Error are some
prescribed small α ∈ (0, 1) – the significance level of a test (it is also called the
size of the test but it is not a common terminology although it is used in the text).
For given data x, we evaluate a statistic T (x) that is called a test statistic and if it
falls in a certain critical region Rα (often also called rejection region), we reject H
in the favor of K . We demand that T (x) and Rα are chosen in such a way that
Type I Error is at most α, i.e. for θ ∈ Θ0

P(T (X) ∈ Rα|θ) ≤ α,
1Notice, the asymmetry is the language.
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The Neyman-Pearson Framework

The p-value

The test procedure can be identified with a test statistic T (x) and a
rejection region Rα.
It is quite natural to expected that Rα is decreasing with α (it should be
harder to reject H if error 1 is smaller).
Thus for a given sample x, there should be an α̂ such that for α > α̂ we
have T (x) ∈ Rα and for α < α̂ the test statistics T (x) is outside Rα.
The value α̂ is called the p-value for a given test.
This is also named the observed significant level, is only dependent
on the data and is independent of the choice of α.
We observe that α̂ ≥ α means that we do not reject H and α̂ < α means
the we reject H.
The p-value can be viewed as a version of the test statistics (remember
that it does depend on the original choice of the test statistics T ).
We observe that if P(T (X) ∈ Rα|θ0) = α, than it means that
P(α̂ < α|θ0) = α and thus the distribution of the p value is uniform on
[0,1] under H : θ = θ0.
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The Neyman-Pearson Framework

The power of a test

While the focus in setting a testing hypothesis problem is on Type I Error (controlled by
the significance level), it is also important to have chances of Type II Error as small as
possible.

For a given testing procedure smaller chances of Type I Error are at the cost of
bigger chances of Type II Error.

However, the chances of Type II Error can serve for comparison of testing
procedures for which the significance level is the same.

For this reason, the concept of the power of a test has been introduced.

The power of a test is a function β(θ) = β(θ,T ) of θ ∈ Θ1 and equals the
probability of rejecting H while the true parameter is θ, i.e. under the alternative
hypothesis

Among two tests in the same problem and at the same significance level, the
one with larger power for all θ ∈ Θ1 is considered uniformly better.

The power of a given procedure is increasing with the sample size of data,
therefore it is often used to determine a sample size so that not rejecting H will
represent a strong support for H, not only a lack of evidence for the alternative.
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The Neyman-Pearson Framework

Comparing tests

For a given test procedure δ consider for θ ∈ Θ:

β(θ) = β(θ, δ) = Pθ(δ(X ) = 1) = Pθ(T (X ) ∈ Rα)

θ /∈ Θ0: β(θ) is smaller than the significance level α.

θ /∈ Θ1: β(θ) is the probability of not making of Type II Error: the bigger this
probability the better.

The test δ1 is uniformly more powerful than δ2, both on the same significance
level, if β(θ, δ1) ≤ β(θ, δ2) for all θ ∈ Θ1.

Typical graph of a power function
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The Neyman-Pearson Framework

Testing for the mean
Suppose the data consist of a random sample X1,X2, . . . ,Xn from a N (θ, 1) density.
Let Θ = (−∞,∞) and Θ0 = (−∞, 0] and consider testing H : θ ∈ Θ0, i.e.

H : θ ≤ 0

The standard estimate of θ for this example is X̄ . The bigger the positive value of X̄
that we observe the stronger is the evidence against the null hypothesis that θ ≤ 0, in
favor of the alternative θ > 0. So T (X) = X̄ is a sensible test statistics.

How big does X̄ have to be in order for us to reject H? In other words we want to
determine the rejection region Rα.

It is quite natural to consider Rα = [aα,∞), so we reject H if X̄ is too large, i.e.
X̄ ≥ aα. To determine aα we recall that controlling Type I Error means that

P(X̄ ≥ aα|θ) ≤ α, θ ≤ 0

and

P(X̄ ≥ aα|θ) ≤ P(X̄ ≥ aα|θ = 0) = 1− Φ(aα
√

n),

from which we get that aα = z1−α/
√

n.
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The Neyman-Pearson Framework

The form of the power function

Clearly in our case we have

β(θ) = P(X̄ ≥ aα|θ)

= P
(
(X̄ − θ)

√
n ≥ z1−α/2 − θ

√
n|θ

)
= 1− Φ(z1−α/2 − θ

√
n).

We see clearly that β(0) = α.
The function is increasing to one when θ is increasing: the power
of the test to detect the bigger θ is increasing.
The function is increasing to one when n is increasing: the power
of the test to detect a given θ > 0 is increasing with more data
available.
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Neyman-Pearson Lemma

The optimal test

Ideally, one would like to have the test that is uniformly most
powerful (UMP), i.e. a test δ such that for any other test δ̃ on the
same level

β(θ, δ) ≥ β(θ, δ̃), θ ∈ Θ1.

In general, the problem may be not solvable but in one special
case it has a complete solution.
Namely if both Θ0 and Θ1 are made of one element.
We call such hypotheses simple.
The optimal test is based on the likelihood ration.
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Neyman-Pearson Lemma

The likelihood ratio

This test statistic is based on the idea that the log likelihood at θ0 should bigger
than the log likelihood at θ1, if H : θ = θ0 is correct.

The test statistic is

T1(x) = log
L(θ1|x)

L(θ0|x)
= log L(θ1|x)− log L(θ0|x)

Reject H if T1 > k .

As we will see by a proper choice of k this test is the most powerful no matter
what a form of the distribution p(x |θ) of the data one considers.

k = kα = q1−α, where qp is the p-quantile of T1 under H, since by the definition
of a quantile we have

Pθ0 (T1 > k) ≤ Pθ0 (T1 ≥ q1−α) ≤ 1− (1− α) = α

Pθ0 (T1 ≤ k) ≤ 1− α

When the distribution of T1 is continuous we simply have Pθ0 (T1 > k) = 1− α
and we assume that from now on.
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Neyman-Pearson Lemma

Formulation of the lemma

The Neyman-Pearson lemma provides us with a way of finding most powerful tests. It
demonstrates that the likelihood ratio test is the most powerful for the above problem.
To avoid distracting technicalities of the non-continuous case we formulate and prove
it for the continuous distribution case.

Lemma (The Neyman-Pearson lemma)

Let Rα be a subset of the sample space defined by

Rα = {x : L(θ1|x)/L(θ0|x) ≥ k}

where k is uniquely determined from the equality

α = P (X ∈ Rα|θ0) .

Then Rα defines the most powerful test at the significance level α for testing the simple
hypothesis H : θ = θ0 against the alternative simple hypothesis K : θ = θ1.
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Neyman-Pearson Lemma

The proof of the lemma

Proof.

We need to prove that if A is another critical region of size α (so the corresponding
test is at the significance level α), then the power of the test associated with Rα is at
least as great as the power of the test associated with A, i.e.

Pθ1 (A) ≤ Pθ1 (Rα).

We have for the set indicator function 1A:

Pθ1 (A) = Eθ0

(
1A

Lθ1

Lθ0

)
= Eθ0

(
1Rα

Lθ1

Lθ0

)
− Eθ0

(
1Ac∩Rα

Lθ1

Lθ0

)
+ Eθ0

(
1A∩Rc

α

Lθ1

Lθ0

)
≤ Pθ1 (Rα)− kPθ0

(
Ac ∩ Rα

)
+ kPθ0

(
A ∩ Rc

α

)
= Pθ1 (Rα) + k

(
Pθ0

(
A ∩ Rc

α

)
+ Pθ0 (A ∩ Rα)− Pθ0

(
Ac ∩ Rα

)
− Pθ0 (A ∩ Rα)

)
= Pθ1 (Rα) + k (Pθ0 (A)− Pθ0 (Rα))

= Pθ1 (Rα)
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Neyman-Pearson Lemma

Example
Suppose X1, . . . ,Xn are iid N (0, 1), and and we want to test H : θ = θ0 versus
K : θ = θ1, where θ1 > θ0. We should reject H if Z =

√
n(X̄ − θ′) is large, or

equivalently if X̄ is large. We can now use the Neyman-Pearson lemma to show that
the test is “best”. The likelihood function is

L(θ) = (2π)−n/2 exp{−
n∑

i=1

(xi − θ)2/2}.

According to the Neyman-Pearson lemma, a best critical region is given by

1
n

ln[L(θ1)/L(θ0)] ≥ k2.

But

1
n

ln
L(θ1)

L(θ0)
=

1
n

n∑
i=1

(
(xi − θ0)2

2
− (xi − θ1)2

2

)
=

1
2n

n∑
i=1

[2(θ1 − θ0)xi + θ2
0 − θ2

1]

= (θ1 − θ0)x̄ +
1
2

[θ2
0 − θ2

1].

So the best test rejects H0 when x̄ ≥ k , where k is a constant. But this is exactly the
form of the rejection region for the proposed test. Therefore, it is the “best”.
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