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The quality of estimation

The bias and unbiased estimators

In the previous lecture, we have seen an approach to estimation that is based
on the likelihood of observed results. Next, we study general theory of
estimation that is used to compare between different estimators and to decide
on the most efficient one.

Suppose that we are going to observe a value of a random vector X. Let
X denote the set of possible values X can take and, for x ∈ X , let f (x|θ)
denote the probability (or density) that X takes the value x where the
parameter θ is some unknown element of the set Θ.

An estimator θ̂ is a procedure that for each possible value x ∈ X
specifies which element of Θ we should report as an estimate of θ.
When we observe X = x, we quote θ̂(x) as our estimate of θ. Thus θ̂ is a
function of the random variable X. Sometimes we write θ̂(X) to
emphasise this point.
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The quality of estimation

Bias and unbiased estimators

To evaluate the usefulness of an estimator θ̂ = θ̂(x) of θ, examine the properties of the
random variable θ̂ = θ̂(X).

Given an estimator θ̂, we can calculate its expected value for each possible
value of θ ∈ Θ.

An estimator is said to be unbiased if this expected value is equal to θ.

If an estimator is unbiased then, by the Law of Large Numbers, we can conclude
that by repeating the experiment an infinite number of times (never happens, not
even twice:) with θ fixed and calculate the value of the estimator each time then
the average of the estimator values will be exactly equal to θ.

Definition (Unbiased estimators)

An estimator θ̂ = θ̂(X) is said to be unbiased for a parameter θ if it equals θ in
expectation

Eθ[θ̂(X)] = Eθ(θ̂) = θ.

Intuitively, an unbiased estimator is ‘right on target’. In general, Biasθ(θ̂) = Eθ(θ̂)− θ.
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The quality of estimation

Examples
The most well-known estimators are the sample mean and the sample variance

X =
n∑

i=1

Xi/n, S2 =
n

n − 1
(X − X )2 =

n
n − 1

(
X 2 − X

2
)

The strange factor n
n−1 is to force the unbiasedness of S2 (Why?).

Note that even if θ̂ is an unbiased estimator of θ, g(θ̂) will generally not be an
unbiased estimator of g(θ) unless g is linear or affine.

This limits the importance of the notion of unbiasedness. It might be at least as
important that an estimator is accurate in the sense that its distribution is highly
concentrated around θ.

For an arbitrary distribution, the estimator S2 is an unbiased estimator of the
variance of this distribution.

Consider the estimator S2 of variance σ2 in the case of the normal distribution.
Although S2 is an unbiased estimator of σ2, S is not an unbiased estimator of σ.

Homework Find the most explicit form of the bias of S as an estimator of σ.
Can you simply argue if the bias is positive or negative?
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The quality of estimation

Mean Square Error

Definition (Mean squared error)

The mean squared error of the estimator θ̂ is defined as MSEθ(θ̂) = Eθ(θ̂ − θ)2. Given
the same set of data, θ̂1 is “better” than θ̂2 if MSEθ(θ̂1) ≤ MSEθ(θ̂2) (uniformly better if
true for all θ). �

Lemma (The MSE variance-bias tradeoff)

The MSE decomposes as MSEθ(θ̂) = Varθ(θ̂) + Biasθ(θ̂)2.

Proof.
MSE(θ̂) = E(θ̂ − θ)2 = E{ [ θ̂ − E(θ̂) ] + [ E(θ̂)− θ ]}2 = E [θ̂ − E(θ̂)]2 + E [E(θ̂)− θ]2

+2 E
{

[θ̂ − E(θ̂)][E(θ̂)− θ]
}

︸ ︷︷ ︸
=0

= E [θ̂ − E(θ̂)]2 + E [E(θ̂)− θ]2 = Var(θ̂) + [E(θ̂)− θ]2︸ ︷︷ ︸
Bias(θ̂)2

.

NOTE: This lemma implies that the mean squared error of an unbiased estimator is
equal to the variance of the estimator.
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The quality of estimation

Example: Standard deviation estimation

For the estimation of σ2 in the two-parameter normal distribution,
we had two explicit estimators: sample variance and n − 1 divisor
sample variance.
One can argue that the unbiased estimator is better, since it has
the smaller MSE. Why?
The estimation of σ can be also performed by the square roots of
these two estimators. However the MSE of these estimators are
not derivable directly from the MSE of the variance estimators.

Homework S is the biased estimator of σ. Argue that it is not the MLE by
explicitely identifying the MLE. The MLE is also biased. Investigate the bias
and MSE of these two estimators. Summarize conclusions.
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The quality of estimation

The minimal variance linear mean estimator

Let X1, . . . ,Xn be independent random variables with means E(Xi) = µ
and variances Var(Xi) = σ2

i . Consider pooling the estimators of µ into
a common estimator using the linear combination
µ̂ = w1X1 + w2X2 + · · ·+ wnXn. We will see that the following is true

(i) The estimator µ̂ is unbiased if and only if
∑

wi = 1.
(ii) The estimator µ̂ has minimum variance among this class of

estimators when the weights are inversely proportional to the
variances σ2

i .

(iii) The variance of µ̂ for optimal weights wi is Var(µ̂) = 1/
∑

i σ
−2
i .
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The quality of estimation

Minimum-Variance Unbiased Estimation

Getting a small MSE often involves a tradeoff between variance and
bias. For unbiased estimators, the MSE obviously equals the variance,
MSE(θ̂) = Var(θ̂), so no tradeoff can be made. One approach is to
restrict ourselves to the subclass of estimators that are unbiased and
minimum variance.

Definition (Minimum-variance unbiased estimator)

If an unbiased estimator of g(θ) has minimum variance (for all possible
values of θ) among all unbiased estimators of g(θ) it is called a
uniformly minimum variance unbiased estimator (UMVUE or MVUE).

We will develop a method of finding the MVUE when it exists. When
such an estimator does not exist we will be able to find a lower bound
for the variance of an unbiased estimator in the class of unbiased
estimators, and compare the variance of our unbiased estimator with
this lower bound.
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The information inequality

Assumptions

We suppose throughout that we have a regular parametric model and further
that Θ is an open subset of the line.
The support set of the distributions does not depend on θ ∈ Θ.
∂log p(x , θ)/∂θ exists.
Then, for a statistics T , we have the following change of integration with
derivation

∂

∂θ
Eθ(T ) =

∂

∂θ

∫
X

T (x)p(x |θ) dx =

∫
X

∂

∂θ
T (x)p(x |θ) dx

In our discussion, we will work under these assumptions. We do not discuss in any
detail when these assumptions are satisfied. It should be however remembered that

these assumptions are satisfied by exponential families in the one- and
multiparameter cases,

they are frequently valid both for the discrete and continuous distributions.

Homework Discuss the issue of changing the order of differentiation and integration by
providing examples when this can and cannot be done. Provide some general condi-
tions that are sufficient for this to hold.
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The information inequality

The score function

Definition (Score function)

For the (possibly vector valued) observation X = x to be informative about θ, the
density must vary with θ. If f (x |θ) is smooth and differentiable, then for finding MLE we
have used zeros of the score function

S(θ) = S(θ|x) =
∂

∂θ
log p(x |θ) ≡ ∂p(x |θ)/∂θ

p(x |θ)
.

If differentiation wrt θ and integration wrt x can be interchanged, as we assume, we have for X distributed according to p(x|θ):

Eθ{S(θ|X)} =

∫
∂p(x|θ)/∂θ

p(x|θ)
p(x|θ)dx =

∫
∂p(x|θ)/∂θdx =

∂

∂θ

{∫
p(x|θ)dx

}
=

∂

∂θ
1 = 0.

Thus the score function has expectation zero.
The score function S(θ|X ), for a fixed θ, is a random variable (but it is not a
statistic, why?).
We often drop explicit dependence on X from the notation by simply writing S(θ).
The negative derivative of the score function Iobs(θ) = −∂S(θ)/∂θ measures
how concave down is the likelihood around value θ.
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The information inequality

The Fisher Information

Definition (Fisher information)

The Fisher information is defined as the average value of the minus derivative of the
score function

I(θ) ≡ −Eθ
(
∂

∂θ
S(θ)

)
= EθIobs(θ).

The negative derivative of the score function Iobs(θ), which is a random variable
dependent on X , is referred to as empirical or observed information about θ. �

Lemma

I(θ) = Varθ S(θ)

We note that VarθS = EθS2 and

∂S

∂θ
=
∂2 log p

∂θ2
=

∂

∂θ

[ 1

p

∂p

∂θ

]
= −

1

p2

[
∂p

∂θ

]2
+

1

p

∂2p

∂θ2
= −

[
∂ log p

∂θ

]2
+

1

p

∂2p

∂θ2
= −S2 +

1

p

∂2p

∂θ2

If integration and differentiation can be interchanged

Eθ

[
1

p

∂2p

∂θ2

]
=

∫
X

∂2p

∂θ2
dx =

∂2

∂θ2

∫
X

pdx =
∂2

∂θ2
1 = 0.
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The information inequality

The Cramér-Rao lower bound (CRLB)

Theorem (Information Inequality)

Let θ̂ be an unbiased estimator of θ. Then Varθ θ̂ ≥ 1/I(θ).

Proof.

Unbiasedness means that Eθ(θ̂) =
∫
θ̂(x)p(x |θ)dx = θ. Assume we can differentiate

wrt θ under the integral, then
∫

∂
∂θ

{
θ̂(x)p(x |θ)

}
dx =

∫
θ̂(x) ∂

∂θ
p(x |θ) dx = 1 since

the estimator θ̂(x) can’t depend on θ.
Now, ∂p

∂θ
= p ∂

∂θ
(log p) , so that∫
θ̂(x)p

∂

∂θ
(log p) dx = Eθ

[
θ̂(x)

∂

∂θ
(log p)

]
= Eθ(θ̂S) = 1.

We already know that the score function has expectation zero, Eθ (S) = 0.
Consequently Covθ(θ̂,S) = Eθ(θ̂S)− Eθ(θ̂)Eθ(S) = Eθ(θ̂S) = 1. By Schwartz’s
inequality

1 = Covθ(θ̂,S)2 ≤ Varθ(θ̂)Varθ(S)

This implies the Rao-Cramér inequality.
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The information inequality

Comments

Why ‘information’? – Variance measures the lack of knowledge. The reciprocal
of the variance could be defined as the amount of information carried by the
(possibly vector valued) random observation X about θ.

We require that the ranges of the integrals (supports of the densities) do not
depend on θ. That is, the range of x , here the support of p(x |θ), cannot depend
on θ. This second condition is violated for some density functions, i.e. the CRLB
is not valid for the uniform distribution.

We can have absolute assessment for unbiased estimators by comparing their
variances to the CRLB. We can also assess biased estimators. If its variance is
lower than CRLB then it can be indeed a very good estimate, although it is
biased.

In the iid case, i.e. p(x |θ) = p1(x1|θ) . . . p1(xn|θ), then I(θ) = nI1(θ), where the
I1(θ) is based on p1(x |θ).
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The information inequality

Example
Consider IID case with

p1(xi |µ) =
1
µ

exp

(
−1
µ

xi

)
.

and p(x |µ) =
(

1
µ

)n
exp

(
− 1
µ

n∑
i=1

xi

)
. The score function, which is the partial derivative

of log f wrt the unknown parameter µ, is

S(µ) =
∂

∂µ
log f = −n

µ
+

1
µ2

n∑
i=1

xi .

For X ∼ Exp(1/µ), we have Eµ(X ) = µ implying

I(µ) = −Eµ

{
∂

∂µ

(
−n
µ

+
1
µ2

n∑
i=1

Xi

)}
= − n

µ2 +
2
µ3 Eµ

{
n∑

i=1

Xi

}
= − n

µ2 +
2nµ
µ3

Hence CRLB = µ2

n .

Let us propose µ̂ = X̄ as an unbiased estimator of µ. For X ∼ Exp(1/µ), we have
E(X ) = µ =

√
Var(X ), implying the unbiased estimator µ̂ = x̄ achieves its CRLB

Var(µ̂) =
1
n2

n∑
i=1

Var(Xi ) =
nµ2

n2 =
µ2

n
.
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The information inequality

Example: Uniform distribution

Let U be a random variable uniformly distributed over (0, θ).

Then θ̂ = U is the MLE of θ.

One can argue that θ̂1 = 2U is the unbiased estimator. Why?

Homework Discuss difficulties with the score function and the Fisher information in this
case. Of these two estimators which has smaller MSE?

Let U1, . . . ,Un be a sample from the uniform distribution over (0, θ).

Then the MLE of θ is
θ̂ = max

i=1,...,n
Ui

Homework Argue that the MLE is not unbiased. Propose an unbiased estimator based
on the MLE. Discuss the MSE and Fisher information for these two estimators.

Consistency and Efficiency of Estimators March 6, 2025 17 / 26



The information inequality

Efficiency

Definition (Efficiency )

Define the efficiency of an unbiased estimator θ̂ as

eff(θ̂) =
CRLB

Var(θ̂)
,

where CRLB = 1/I(θ) . Clearly 0 < eff(θ̂) ≤ 1. An unbiased estimator θ̂
is said to be efficient if eff(θ̂) = 1. �

Definition (Asymptotic efficiency )

The asymptotic efficiency of an unbiased estimator θ̂ is the limit of the
efficiency as n→∞. An unbiased estimator θ̂ is said to be
asymptotically efficient if its asymptotic efficiency is equal to 1. �
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The information inequality

Examples

The following are examples where the efficiency or asymptotical efficiency
can be easily demonstrated

the MLE θ̂ = r/n for the binomial distribution that was considered.

the MLE for the Poisson distribution is 100% efficient.

the MLE θ̂ for the exponential distribution with parameter θ is θ̃
asymptotically efficient.

the MLE estimator of variance in the normal distribution is asymptotically
efficient.

Homework Find a formal argument for all these statements.
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The information inequality

Mutliparameter extension

The information matrix is the covariance of the score vector
S = ∂ log p(X |θ)/∂θ function

I(θ) = Covθ(S) =
[
Eθ

(
∂
∂θi

log p(X |θ) ∂
∂θj

log p(X |θ)
)]d

i,j=1

Theorem

Suppose that θ̂ is an unbiased estimator of θ and I(θ) is non-singular.

Covθθ̂ − I(θ)−1

is a positive definite matrix.
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The information inequality

Canonical exponential family

Consider the canonical form of the exponential family

p(x |θ) = exp

 d∑
j=1

Tj(x)θj − A(θ)

h(x)

Then
I(θ) = CovθT(X ) = Ä(θ).
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Consistency

Asymptotics of estimators

We have already defined asymptotic efficiency of estimators, where
asymptotics is with respect to the sample size converging to infinty.
There are other properties that are desirable.

Asymptotically unbiased Biasθ,n → 0.

Consistency θ̂n → θ, where convergence is either in probability or
with probability one (strong consistency).
Asymptotic normality when an(θ̂ − θ) converges to a standard
normal distribution, for properly chosen non-random an (can be a
matrix in the multiparameter case).
The asymptotic theory will be discussed later in the course. Here
we only consider the consistency condition.
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Consistency

Consistency

Definition

An estimator θ̂n of a parameter θ is called consistent if it is convergent
in probability to θ as n→∞, i.e. for each θ ∈ Θ

lim
n→∞

Pθ(|θ̂n − θ| > ε) = 0.

A sample mean X̄n is a consistent estimator of the mean µ = EθX
since by the Law of Large Number it is always

X̄n → EX .

An estimator is called uniformly consistent if

lim
n→∞

sup
θ∈Θ

Pθ(|θ̂n − θ| > ε) = 0.
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Consistency

Consistency through Chebyshev’s inequality

Recall that for an unbiased estimator θ̂n:

Pθ(|θ̂n − θ|ε) ≤ Varθ(θ̂n)/ε2.

Thus if one shows that for each θ we have that Varθ(θ̂n) converges
to zero, then it yields consistency. If supθ∈Θ Varθ(θ̂n) converges to
zero, then it yields uniform consistency.
Any efficient estimator based on an IID sample is consistent since

Varθ(θ̂n) =
1

nI1(θ)
→ 0.

Uniform consistency does not need to hold.
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Consistency

Consistency for the exponential families

Theorem
The MLE for an exponential family is consistent.

One of the reasons why the MLE for the exponential families is a good
estimator.

There will be more reasons given later.

Homework Consider the exponential distribution with the intensity λ and the MLE for
λ. Is this estimator uniformly consistent?
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