
Maximum Likelihood Estimation

March 6, 2025

Maximum Likelihood Estimation March 6, 2025 1 / 33



Motto

It is a part of probability that many improbable things
will happen.

Aristotle
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General MLE

Estimation Problem

Consider a sample X that comes from an unknown member Pθ0 of
a family of distributions {Pθ}θ∈Θ.

Any statistic θ̂ that is computable from the observed values x of X
and aims at approximating true θ0 can be called an estimator of
this parameter.

We are interested only in ‘good estimators’.
For example, we want the estimator error ε = θ̂ − θ0 to be small,
for example its MSE to be small

Eθ0(ε2) = Varθ0(θ̂) +
(

Eθ0 θ̂ − θ0

)2
= Varθ0(θ̂) + Bias2

θ0
.

Ideally, we would like to have the bias to be zero and the variance
to be minimal, although, it does not exclude the case when the
MSE to be smaller for a biased estimator than the minimal
variance for all unbiased estimators.
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General MLE

Estimator maximizing the likelihood

Lx(θ) – the likelihood function of θ (the probability density
depending on θ with given x).
We think of Lx(θ) as a measure of how “likely” θ is to have
produced the observed x.
The method of maximum likelihood finds that value θ̂MLE of the
parameter that is “most likely” to have produced the data.
That is, if X = x is observed

θ̂MLE = argmax
θ∈Θ

Lx(θ).

Maximum likelihood estimates need neither exist nor be unique.
They do not even need to be ‘best’.
But in a wide class of important cases, they are asymptotically
(with respect to the sample size) the best possible ones.
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General MLE

Two examples

An iid sample from normal distribution with θ = (µ, σ2). It is easy
to check that

θ̂ = (X̄ ,X 2 − X̄ 2)

is the MLE for θ.
An iid sample from uniform distribution on a sequence {1, . . . , θ}
with the size of the population θ ∈ N being an unknown parameter.
It is easy to see that the likelihood has the form

Lx(θ) =
1
θn 1[0,θ]( max

i=1,...,n
xi)

and the maximum is reached at θ̂ = maxi=1,...,n xi . Similar
argument leads to the same estimator if the sample is from the
continuous uniform distribution on [0, θ].
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General MLE

Two examples, cont.

The MLE estimators are not necessarily the best estimator, although
they are generally good ones.

Homework For the estimation problem of the normal distribution, show that
the MLE estimator of variance is biased and check what is its MSE. How this
MSE compares to the MSE of the classical unbiased estimator.

For the uniform distribution case, the estimator may even seem
unnatural. It excludes possibility of exceeding the maximum of the
data, which seems to be wrong.

Homework For the estimation problem of the uniform distribution, show that
the MLE estimator of θ is biased and check what is its MSE. Based on your
findings suggest the unbiased estimator and evaluat the MSE of both MLE and
the proposed unbiased estimator.
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General MLE

Likelihood equations

Suppose:
X ∼ Pθ, with θ ∈ Θ, an open set parameter space
the likelihood function LX (θ) is differentiable in θ
θ̂MLE exists

Then: θ̂MLE must satisfy the Likelihood Equation(s)

∇θLX (θ) = 0.

Important Case: for independent Xi ’s with

n∑
i=1

∇ log pi(xi |θ) = 0

NOTE: pi(·|θ) may vary with i , so that elements in the sample can
have different distributions.
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General MLE

Multinomial trials
an experiment with n i.i.d. trials in which each trial can produce a result in one of
k categories
Xi = j if the i th trial produces a result in the j th category
let θj = P(Xi = j) be the probability of the j th category, and let

Nj =
n∑

i=1

1{Xi =j},

i.e. Nj is the number of observations in the j th category.
for an experiment in which we observe nj , j = 1, . . . , k we have

lx(θ) =
k∑

j=1

nj log θj ,

with θk = 1−
∑k−1

j=1 θj and the normal (likelihood) equations are for j < k

∂lx
∂θj

= nj/θj − nk/

(
1−

k−1∑
i=1

θi

)
= 0.

Thus, assuming w.l.g. that nk 6= 0, nj/nk = θj/θk , which implies that θ̂j = nj/n.
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MLE for exponential families

Natural parameter

Questions of existence and uniqueness of maximum likelihood
estimates in canonical exponential families can be answered
completely and elegantly. This is largely a consequence of the strict
concavity of the log likelihood in the natural parameter η.

Recall that {Pθ}, θ ∈ Θ is a k -parameter exponential family if

p(x |θ) = h(x) exp

 k∑
j=1

ηj(θ)Tj(x)− B(θ)

 , x ∈ Rq

η1, . . . , ηk and B are real-valued functions mapping Θ 7→ R,
T1, . . . ,Tk and h are real-valued functions mapping Rq 7→ R.
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MLE for exponential families

Canonical form of exponential families
Canonical parameter
Consider the canonical form of the exponential density

q(x |η) = h(x) exp(T>(x)η − A(η)).

In the continuous case

A(η) = log

∫ ∞
−∞
· · ·
∫ ∞
−∞

h(x) exp(T>(x)η)dx .

In the discrete case, A(η) is defined in the same way except integrals
are replaced by sums. In either case, we define the natural parameter
space as

E = {η ∈ Rk : −∞ < A(η) <∞},

where k ∈ N is the rank of the exponential family (the smallest possible
dimension).
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MLE for exponential families

A sample from canonical exponential family

If a distribution is from exponential family, then independent
sample (X1, . . . ,Xn) from this distribution has the distribution from
exponential family.

Homework Find the canonical exponential form of the distribution of
(X1, . . . ,Xn) given that you know this form for the individual Xi .

Homework Argue directly from the definition of A(η) on the previous page
that Ȧ(η) = Eη(T(X )).

Homework Argue convexity of the loglikelihood of the exponential family from
the fact the matrix of the second derivatives of Ä(θ) = Varη(T(X )) which is a
positive definite matrix (what is a connection between convexity of a multivari-
ate function and the matrix of its second derivatives?).
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MLE for exponential families

MLE in the convexity (concavity) context

Proposition 2.3.1.

Suppose that the domain of the parameters is open in Rp. If the log-
likelihood is the strictly concave function of the parameter and is un-
bounded on the boundary of the parameter space, then the MLE exists
and is unique.

Some clarificiations:
an open set is a set that with each point contains also a disk (ball)
that is in this set – topological definition
the boundary of a set U is a set ∂U that in any disk (ball) contains
both the points from the set U and outside of the set U
the strictly concave is a function like −x2, (‘sad face’)
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MLE for exponential families

A necessary and sufficient condition for existence and
uniqueness of the MLE

Theorem 2.3.1.

Suppose P is the canonical exponential family generated by (T,h) and that

the natural parameter space, E , is open,

the family is of rank k .

Then the MLE of η exists and is unique for every x such that t0 = T(x) satisfies
for all c 6= 0:

P(c>T(X ) > c>t0) > 0. (1)

and the MLE is a solution to

Ȧ(η)(= Eη(T(X ))) = t0.

Conversely, if t0 doesn’t satisfy (1), then the MLE doesn’t exist and the above
equation has no solution.
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MLE for exponential families

Example – the two-parameter gamma family

The density proportional to exp(−λx)xp−1. This is a rank 2 canonical
exponential family with

T =
(∑

log Xi ,
∑

Xi

)
h(x) = 1/x

η = (p,−λ)

A(η) = n (log Γ(η1)− η1 log(−η2)) .

We have

Ȧ(η) = n(Γ′(p)/Γ(p)− log λ,p/λ) = n(log X , X̄ ).

We conclude from Theorem 2.3.2 that the equations have a unique
solution with probability 1. How to find such nonexplicit solutions is
discussed in Section 2.4 to which we turn next.
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Algorithms

MLE as an optimization problem

As we have seen, even in the context of canonical multiparameter
exponential families, such as the two-parameter gamma, MLEs may not
be given explicitly by formulae but only implicitly as the solutions of
systems of nonlinear equations.

In the classical regression model with design matrix of full rank, the
formula for the parameter estimator is easy to write down symbolically
but not easy to evaluate if the dimension of the parameter is large. It is
because the number of operations for inversion of a matrix is on the
order of the third power with respect to the parameter dimension. For
example, if one looks at the expression of 10000 genes through a linear
model, the inverse of the matrix would involve 1012 operations.

We will discuss three algorithms of a type used in different statistical
contexts both for their own sakes and to illustrate what kinds of things
can be established about the black boxes to which we all, at various
times, entrust ourselves.
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Algorithms

Bisection algorithm

By the calculus, if the likelihood is differentiable and the location of the global
maximum is in the interior of the parameter space finding the solution
reduces to finding the solution to the likelihood (normal) equations (the
equations for zeros of the derivative functions).
Algorithm

Finding two points, one that the derivative is below zero and one that it is
above.

Take the middle of the interval made of these points and cut it in half.

Evaluate the value of the derivative at the middle, and replace by the
middle point the one of the original points that has the same sign of the
value of the derivative.

Continue until the length of the interval has the desired accuracy or the
zero is reached before that.
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Algorithms

Example: the shape for gamma distribution

Recall that the density of a gamma distribution is given by

f (x ;β, τ) =
xτ−1

βτΓ(τ)
e−x/β .

The expected value of a gamma variable X is E(X ) = τβ.

Suppose that we have a sample x1, . . . , xn from this distribution and it is
known that the expected value is equal to a certain known value, say a.

Loglikelihood is then equal to

l(τ ; x1, . . . , xn) =

= (τ − 1)
n∑

i=1

log(xi ) + τ

n∑
i=1

xi/a− log nτ (log a− log τ) log Γ(τ) =

= A + τB − τ log Γ(τ) log n(log a− log τ).
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Algorithms

Hybrid estimation the shape for gamma distribution

The derivative of the loglikelihood is

l ′(τ ; x1, . . . , xn) =

= B − (τ log Γ(τ))′ log n(log a− log τ) + log Γ(τ) log n
= B − [log(a/e) log Γ(τ)− τψ(τ) log(τ/a)− log τ log Γ(τ)] log n,

where ψ(τ) = Γ′(τ)/Γ(τ) is the digammma function.

Homework Verify the above calculations. Based on them propose an algo-
rithm that uses the sample mean estimator of the mean of gamma distribu-
tion and the maximizing the likelihood with respect τ (the hybrid estimation
method). Design a Monte Carlo study that examines the performance of this
algorithm. Summarize the results of a study in a table.
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Algorithms

Example: the shape for gamma distribution

The bisection algorithm applied to a strictly increasing derivative
(concave function) finds the solution that is unique.
For the canonical exponential family this is the case since
f (η) = EηT (X )− t0 is strictly increasing:

f ′(η) = A′′(η) = VarηT (X ) > 0.

Example: For the shape parameter gamma family with the
density proportional to xθ−1e−x , one has to find the solution

Γ′(θ)

Γ(θ)
= log X .
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Algorithms

Extension to multidimensional parameter – coordinate
ascent

We need to find a solution to the normal equation

Ȧ(η1, . . . , ηk ) = T

The coordinate ascent method is the bisection algorithm applied
to each coordinate in the iterative recycling manner.

Start with an arbitrary (η̂0
1 , . . . , η̂

0
k ) (some at hoc estimation, method

of moments or plug-in estimation are recommended)
Solve the equation for the first derivative with respect to η1 leading,
say, to η1

1 and replace η0
1 by it.

Repeat the previous step for the first derivative with respect to η2
and so on until all η0

i ’s are replaced by the corresponding η1
i ’s.

Repeat the above series of steps with (η̂j−1
1 , . . . , η̂j−1

k ) replaced by
(η̂j

1, . . . , η̂
j
k ) and leading to (η̂j+1

1 , . . . , η̂j+1
k ) until the desired accuracy

is attained.
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Algorithms

Why does it work? – mathematics

Theorem 2.4.2.

If the conditions of Theorem 2.3.1 hold, then (η̂r
1, . . . , η̂

r
k )

r→∞→ (η̂1, . . . , η̂k ).

A sketch of the proof.

The log-likelihood is t>0 η − A(η) + log h(x) and it is a concave function.

The algorithm finds the maximum along one coordinates while all other are fixed
so that the value of the likelihood is increasing at each step of the algorithm.

The log-likelihood is bounded from the above in the interior of the set of the
parameters thus there has to be a limit l(η̂r )→ λ ∈ (−∞,∞)

This implies that the η̂r for large r must reside in some closed ball in the interior
of the parameter space and thus needs to have a convergent subsequence.

The limit of this subsequence must be the same due to the strict concavity and
the continuity of the derivatives of A, that take the value zero at each ‘loop’ of the
algorithm so in the limit they have to be zero at all the coordinates.
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Algorithms

Why does it work? – a picture

The coordinate ascent
algorithm. The graph
shows log likelihood con-
tours, that is values of
(θ1, θ2) where the loglike-
lihood is constant. At
each stage with one co-
ordinate fixed, find that
member of the family of
contours to which the
vertical (or horizontal)
line is tangent.
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Algorithms

Example: gamma distribution
As an alternative (better?) method to the hybrid one from Homework, one can
solve the problem of estimation of the shape τ and scale β using
Theorem 2.3.1, see the previous section. This is a rank 2 canonical
exponential family with

T =
(∑

log Xi ,
∑

Xi

)
h(x) = 1/x

η = (τ,−1/β)

A(η) = n (log Γ(η1) + η1 log(−η2)) .

We have
Ȧ(η) = n(Γ′(τ)/Γ(τ) + log β, τβ) = n(log X , X̄ ).

Homework Implement the coordinate ascent method to estimate τ and β. Per-
form simulation study of the performance and compare to the hybrid method
discussed in the previous homework. Draw the conclusions on the perfor-
mance of the two methods.
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Algorithms

The Newton-Raphson Algorithm

Let us start with a visualization of the algorithm

The algorithm that, in gen-
eral, can be shown to be
faster than coordinate as-
cent. This method requires
computation of the inverse
of the Hessian, which may
counterbalance its advan-
tage in speed of conver-
gence (when it does con-
verge).
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Algorithms

NRA for MLE and exponential family

For a general log-likelihood

θ̂new = θ̂old − l̈−1(θ̂old )l̇(θ̂old ).

For the canonical exponential family

η̂new = η̂old − Ä−1(η̂old )
(

Ȧ(η̂old )− t0

)
.

When likelihoods are non-concave, methods such as bisection,
coordinate ascent, and Newton–Raphson’s are still employed, though
there is a distinct possibility of nonconvergence or convergence to a
local rather than global maximum.
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Algorithms

The EM algorithm – foundation

There are many models that have the following structure.
There are complete observations, X with density p(x , θ) with log
likelihood lx (θ) that is easy to maximize.
Unfortunately, only incomplete data are observed and they are
given by S = S(X ) with density q(s, θ), where log-likelihood ls(θ)
is difficult to maximize.
A fruitful way of thinking of such problems is in terms of S being
incomplete data and representing a part of X , the rest of X is
“missing” and its “reconstruction” is part of the process of
estimating θ by maximum likelihood.
The algorithm was formalized with many examples in Dempster,
Laird, and Rubin (1977), though an earlier general form goes back
to Baum, Petrie, Soules, and Weiss (1970).
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Algorithms

Example – normal distribution with missing data

Let (Z1,Y1), . . . , (Zn,Yn) be i.i.d. as N(µ1, µ2, σ
2
1, σ

2
2, ρ).

Suppose that some of the Zi and some of the Yi are missing as
follows:

For 1 ≤ i ≤ n1 we observe both Zi and Yi ,for n1 + 1 ≤ i ≤ n2, we
observe only Zi , and for n2 + 1 ≤ i ≤ n, we observe only Yi . The
observed data are denoted by S.
In this case a set of sufficient statistics for the complete data is

T = (Z̄ , Ȳ , Z 2,Y 2,ZY ).

One wants to reconstruct the missing parts needed for T from the
incomplete data given in S.

Homework An intuitive way to approach to the missing data is by replacing
statistics in T by their conditional expectation with respect to S(X ). Formalize
this approach and give its explicit description.
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Algorithms

Formulation of the EM algorithm

Let

J(θ|θ0) = Eθ0

(
log

p(X , θ)

p(X , θ0)

∣∣∣∣S = s
)
.

E-step – evaluate J(θ|θ0) as a function of θ.
M-step – maximize J(θ|θ0) over θ to get a ‘new’ θ0.
repeat the above until the convergence.

If θnew and θold the values at the end and at the beginning of the loop in
the algorithm, respectively. Then

q(s, θnew ) ≥ q(s, θold ).

The formal argument is interesting (not very intuitive), see
Lemma 2.4.1.
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Algorithms

The EM algorithm for exponential families
Theorem 2.4.3
For a canonical exponential family generated by (T ,h) satisfying the
conditions of Theorem 2.3.1. Let S(X ) be any statistic, then the EM
algorithm consists of the alternation

Ȧ(θnew ) = Eθold (T (X )|S(X ) = s).

Example (cont.): We can see that

Ȧ(θ) = EθT = (µ1, µ2, σ
2
1 + µ2

1, σ
2
2 + µ2

2, σ1σ2ρ+ µ1µ1)

so the left-hand side is straightforward. The right hand side in
Theorem 2.4.3 can be easily derived by noting the well-known relations

Eθ(Y |Z ) = µ2 + ρσ2(Z − µ1)/σ1

Eθ(Y 2|Z ) = (µ2 + ρσ2(Z − µ1)/σ1)2 + (1− ρ2)σ2
2.
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Algorithms

Example of normal distribution continued

The new paremater values being simply regular functions of the
sufficient statistic T but evaluated at the expected values in the E-step
of the algorithm. See Example 2.4.6 for details.

Homework Compare critically the above method to the one that you de-
scribed in the previous homework. How are they similar and how they differ?
Can you provide some analysis of the performance, theoretical, or by simula-
tions?
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