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Motto

Nothing is more practical than a good theory.

Vladimir Vapnik∗

∗in Statistical Learning Theory. John Wiley, New York (1998)
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Statistical models

Data as an outcome of sampling variables
1 Empirical observations are often referred to as data.
2 Thus a set of anything (numbers, categorical values, names,

good, bad, thick, thin, woman, man, images or even movies, etc.)
that has been obtained or extracted from empirical evidence can
be called a data set

3 In the theory of statistics, data are characterized by two
fundamental aspects:

They can be grouped according to a particular structure relevant to
the purpose of data collection, such a grouping is called a data
point or a datum. If there is only one value per a data point, then
one deals with one-dimensional data point (no structure within a
data point).
Typically, there are many data points in a data set and each
individual data point has similar (if not identical) structure as other
data points (belongs to the same domain).

4 Data points form a sample and there is another nature of the
structure between data points than within data points .
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Statistical models

Structure of a datum

Data are mathematical representations of observations. We roll a die,
we see the number of dots that came up, say six, and we say that our
datum (data point) is 6. Data can consist of

1 Vectors of scalars, measurements, and/or characters, for example,
a time series of measurements.

2 Matrices of scalars and/or characters, for example, digitized
pictures or more routinely measurements of covariates and
response on a set of individuals—see Example 1.1.4 and Sections
2.2.1 and 6.1.

3 Arrays of scalars and/or characters as in contingency tables—see
Chapter 6—or more generally multifactor-multiresponse data on a
number of individuals.

4 Mixtures of all of the above and more, in particular, functions as in
signal processing, trees as in evolutionary phylogenies, and so on.
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Statistical models

Random character of sampling

In statistics, almost invariably, we observe many data points by
observing them repetitively. The repetitive collection of structurally the
same (or similar) data points is referred to as sampling.

1 The most classical and elementary sampling is independent
sampling under the same circumstances.

2 Sampling under different circumstances affected by some
covariates (different geographical locations or by different
methods of data collection methods, etc.)

3 Dependent sampling can occur as well (for example, in time
series).

4 The most important about sampling is that its mechanism is well
understood and follow the theoretical paradigms that we assume
about the model.

The number of repetitive data points is referred to as a sample size.
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Statistical models

Statistical model – clarification of randomness

A statistical model is mathematical conceptualization of the stochastic
mechanism that produces the data.
X – sample space, the set all possible values for data.
(Ω,F ,P) – a probability space, where Ω is a set elementary
outcomes, F is a σ-field of subsets of F , a.k.a. a collection of
events, P is a probability measure on F .
Random variable X is a mapping from Ω to X (more precisely a
measurable mapping).
Our data are resulting from observing X (ω), where the choice of ω
is dictated by the probability measure P.
If P is known, then there is no statistics only probability theory.
Thus statistics (as a discipline) deals with the cases when P is
unspecified, for example, we only know that it belongs to a certain
family of probability measures

{Pθ}θ∈Θ.
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Statistical models

Statistical Model on space of observations

One can simplify the set-up and consider only the probabilities on the
space of values of X , i.e. on X . This is because any Pθ generates
distribution of X on events in X , i.e. for an event A ⊂ X

PX
θ (A) = Pθ(X ∈ A)

(
= Pθ(X−1(A))

)

Thus a statistical model deals with parametrized probability
measures on the space of observations (sample space) and we
drop X from PX

θ :
A ⊂ X 7→ Pθ(A), θ ∈ Θ.

The true θ is unknown
The goal of statistics is to find out θ from what was observed i.e.
from the observed x = X (ω), i.e. from the data.
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Statistical models

Example - hypergeometric model

We are faced with a shipment of N manufactured items. An unknown
proportion θ of these elements are defective. It is too expensive to
examine all of the items. So to get information about θ, a sample of n
elements is drawn without replacement and inspected. The data is
made of one observation that is the number k of defectives found in
the sample.

Data (observation) x . Strictly speaking we can have either n data
points (0-defective or 1-good) or only one datum (the number of
defectives).
The random variable X is a number of defective in a random
experiment of drawing n from N.
The statistical model

Pθ(X = k) =

(Nθ
k

)(N−Nθ
n−k

)(N
n

) .
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Statistical models

Example - sampling population

Suppose that in a small community, we approach individuals that are
eligible for voting and we are interested in finding if they are planning
to take part in the coming election. To review the introduced basic
concepts, let us answer the following questions, in the relation to the
hyperbolic model

What is a datum?
What is a sample?
What is a sample size?
What kind of sampling do we deal with?
What a statistical model is suitable for the problem?
What is (are) a parameter(s) in this problem?

Homework Propose a hierarchical extension of this model to capture the
percentage of voting population in a country that is treated a conglomerate of
small communities.
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Statistical models

Regular models

Notation:
θ: a parameter specifying a probability distribution Pθ.
F (·|θ) : Distribution function of Pθ
Eθ[·]: Expectation under Pθ. For a (measurable) function g(x):

Eθ[g(X )] =

∫
X

g(x)dF (x |θ)

p(x |θ) = p(x ; θ): probability-density or -mass function (pdf or pdm)
of Pθ
Regularity assumptions:

Either All Pθ ’s are (absolutely) continuous with densities p(x |θ),
Or All Pθ ’s are discrete with pmf’s p(x |θ) and the set
{x : p(x |θ) > 0} is the same for all θ ∈ Θ, i.e. the common support
of distributions.
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Parameters

Parameter space

A statistical model is essentially described by a family of
probabilities that is feasible for a given space of observations.
Such a family can be always parametrized {Pθ}θ∈Θ.

Actual observations (data) come from the model Pθ0 and θ0 ∈ Θ is
called a true (while unknown) parameter.
It is typically assumed that θ are fully identifiable, i.e. different
parameters lead to different probabilities (distributions).
If Θ is a subset of a finite dimensional space, the model is called
parametric.
If Θ is a part of infinite dimensional space, the model is called
non-parameteric.
If some natural sub-parameters in Θ belong to finite dimensional
space and this part is of the main interest while the rest is
infinite-dimensional but not of the interest model is called
semi-parametrics.
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Parameters

Example

We want to study how a physical or economic feature, for example,
height or income, is distributed in a large population. An exhaustive
census is impossible so the study is based on measurements and a
sample of n individuals drawn at random from the population. The
population is so large that the actual process can be considered as
sampling with replacement. For example, an experimenter makes n
independent determinations of the value of a physical constant µ. His
measurements are subject to random fluctuations (error) and the data
can be thought of as µ plus some random errors.

The model:

X = (X1, . . . ,Xn) = (µ+ ε1, . . . , µ+ εn),

where εi are independent identically distributed according to a
symmetric-around-zero distribution G or, for shortness,

εi
iid∼ G
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Parameters

Parameter space in the example

The data X ∈ Rn have the distribution defined by the cumulative
distribution function (cdf)

P(X ≤ x) =
n∏

i=1

G(xi − µ)

θ = (µ,G) and the parameter space is R× P0, where P0 is the
class of all symmetric around zero distributions.
The model is non-parametric because θ is not from a finite
dimensional space (P0 is not a finite dimensional space).
However, µ is typically the parameter of interest and G is only a
nuisance parameter. Since µ is one-dimensional and of interest,
this case is defined as a semi-parametric case.
Finally, we can limit the class of possible G for the model by, for
example, assuming that G = N(0, σ2). The model becomes fully
parametric with θ = (µ, σ2) ⊂ R× (0,∞).
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Statistics and goals of statistical inference

A statistic

A statistic is a (measurable) function of an observation that does
not depend on the specific model generating a given type of data.
Assume that the data are observation from the model given by
X ∈ X and with the distribution from the class {Pθ}θ∈Θ.
Any (measurable) function T : X 7→ T , when appled to the random
variable X is called a statistics, i.e. T (X ) is called a statistics.
The two most known statistics are sample mean and sample
variance, i.e. for X = (X1, . . . ,Xn):

T1(X ) =
1
n

n∑
i=1

Xi

T2(X ) =
1

n − 1

n∑
i=1

(Xi − T1(X ))2

In the traditional notation X̄ = T1(X ) and S2 = T2(X ).
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Statistics and goals of statistical inference

More examples

The statistic evaluated in a concrete situation typically aims at some
statistical parameter (the mean, variance).

The proportion of defective elements X/n in a sample of
manufactured elements is also a statistic.
The empirical distribution function F̂n(X ) aims at the (true) cdf F
of Xi ’s

F̂n(X )(x) =
1
n

n∑
i=1

1(0,x ](Xi) =
#{i ≤ n : Xi ≤ x}

n
.

Of course, F̂n(X ) is also a statistic.

Homework What is the pointwise limit of Fn(X ), when n increases without
bound? Use the Law of Large Numbers. Use the Central Limit Theorem to
establish the pointwise bounds for the error Fn(X )−F. Can you elaborate why
the word ‘pointwise’ is used here?

Data, Models, Parameters, and Statistics February 13, 2025 18 / 25



Statistics and goals of statistical inference

Statistical inference

A statistic should be viewed as a certain summary of some information
contained in the data. It serves of a certain purpose to conclude
something about the underlying statistical model, or as we say, to
make statistical inference. The following are traditional goals of such
inference

Estimation – producing “best guesses” of the values of important
model parameters – point estimation.
Confidence intervals – assessing the error of a point estimator –
interval estimation.
Testing significance – determining if the data support a certain
specific claim about the model – testing statistical hypotheses.
Prediction – finding the best method of predicting an unknown
variable based on the observed ones and assessing the prediction
error.
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Statistics and goals of statistical inference

Decision theory framework
Sometimes it is convenient to formulate the statistical inference problem in
the framework of the decision theory.

Based on the data x a statistician makes a decision δ(x) about some
function ν(Pθ0 ) of the true distribution given by Pθ0 .

There is some loss associated with this decision defined by l(θ0, δ(x)).

It can be, for example, the quadratic loss if the inference is about the
parameter ν0 = ν(Pθ0 ), so δ(x) = ν̂(x) is a value of an estimator, then

l(θ0, δ(x)) = (ν0 − ν̂(x))2

The risk function is the mean loss (since it is averaged, it is not
depending on the data anymore)

R(θ0, δ) = Eθ0 l(θ0, δ(X ))

In the quadratic loss, the risk becomes the mean square error (MSE)

R(θ0, δ) = Eθ0 (ν0 − ν̂(X ))2
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Statistics and goals of statistical inference

The MSE, variance, and bias

The mean square error (MSE) satisfies

Eθ0(ν0 − ν̂(X ))2 = Var(ν̂) + Bias2(ν̂),

where Bias(ν̂) = Eθ0(ν̂)− ν0.
We often drop θ0 from the notation if it is clear that the
expectations are taken with respect to the true distribution
standing behind the data.

The following is to remember

MSE=Variance+Bias2
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Classical statistical models

General regression models

We observe (z1,Y1), . . . , (zn,Yn), where Y = (Y1, ...,Yn) is a
vector of independent variables.
The distribution of the response Yi for the i th subject or case in
the study is postulated to depend on certain characteristics zi of
the i th subject. Thus, zi is a d dimensional vector, aka a covariate
or an explanatory variable, that gives characteristics such as sex,
age, height, weight, and so on of the i th subject in a study.
If we let f (yi |zi) denote the density of Yi for a subject with
covariate vector zi , then the full statistical model for Y is given by
the joint density

p(y) =
n∏

i=1

f (yi |zi)
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Classical statistical models

Specifications of the regression model

A special non-parameteric subcase, a function µ is unknown and

Yi = µ(zi) + εi , i = 1, . . . ,n.

where εi
iid∼ F .

A special subsubcase, a function g is known but β is unknown

µ(z) = g(β, z),

g known, β ∈ Rd unknown.
A special subsubsubcase (linear model):

g(β, z) = z>β

A special subsubsubsubcase, a parametric model (classical
Gaussian model):

εi ∼ N(0, σ2).
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Classical statistical models

Autoregressive errors

Let X = (X1, ...,Xn) be the n determinations of a physical constant µ.

Xi = µ+ ei , i = 1, . . . ,n
ei = βei−1 + εi , i = 1, . . . ,n, e0 = 0

where εi
iid∼ F .

An example would be, say, the elapsed times X1, ...,Xn spent above a
fixed high level for a series of n consecutive wave records at a point on
the seashore. Let µ = E(Xi) be the average time for an infinite series
of records. It is plausible that ei depends on ei−1 because long waves
tend to be followed by long waves.

Homework Based on your empirical knownledge of wave sizes on a stormy
day in Malmö, provide a simple but realistic model for wave sizes above the
mean sea level. Describe the model, sample space, and comment how the
parameters could be estimated.
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