Discussion of some exercises

November 23, 2023

Discussion of some exercises

Predicting with Bayes

- In a Bayesian model where X₁,..., X_n, X_{n+1} are (conditionally on the unobservable θ) i.i.d. distributed according to f(x|θ), moreover θ is distributed according π.
- The predictive distribution is the distribution of X_{n+1} .
- The *posterior predictive distribution* is the conditional distribution of X_{n+1} given X_1, \ldots, X_n .
- *f* and π are N(θ, σ₀²) and N(θ₀, τ₀²). Evaluate predictive and posterior predictive distributions and discuss their limiting behavior when n → ∞.
- Model

$$f(x_1,\ldots,x_n,x_{n+1}|\theta) = \prod_{i=1}^{n+1} f(x_i|\theta) \propto \exp\left(-\sum_{i=1}^{n+1} (x_i-\theta)^2 / (2\sigma_0^2)\right)$$

Prior

$$\pi(heta) \propto \exp\left(- heta^2/(2 au_0^2)
ight)$$

In the terms of random variables

$$(X_1,\ldots,X_{n+1}|\Theta=\theta)\sim \mathcal{N}(\theta,\sigma_0\mathbf{I}_{n+1}), \ \Theta\sim \mathcal{N}(\mathbf{0},\tau_0^2)$$

• What is the joint distribution $(X_1, \ldots, X_{n+1}, \Theta)$?

Example – normal distribution with missing data

- Let $(Z_1, Y_1), \ldots, (Z_n, Y_n)$ be i.i.d. as $\mathcal{N}(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$.
- Suppose that some of the *Z_i* and some of the *Y_i* are missing as follows:
 - For $1 \le i \le n_1$ we observe both Z_i and Y_i ,for $n_1 + 1 \le i \le n_2$, we observe only Z_i , and for $n_2 + 1 \le i \le n$, we observe only Y_i . The observed data are denoted by S.
 - In this case a set of sufficient statistics for the complete data is

$$T = (\overline{Z}, \overline{Y}, \overline{Z^2}, \overline{Y^2}, \overline{ZY}).$$

• One wants to reconstruct the missing parts needed for *T* from the incomplete data given in *S*.

The EM algorithm for exponential families

Theorem 2.4.3

For a canonical exponential family generated by (T, h) satisfying the conditions of Theorem 2.3.1. Let S(X) be any statistic, then the EM algorithm consists of the alternation

$$\dot{A}(\theta_{new}) = E_{\theta_{old}}(T(X)|S(X) = s).$$

Example (cont.): We can see that

$$\dot{A}(\theta) = E_{\theta}T = (\mu_1, \mu_2, \sigma_1^2 + \mu_1^2, \sigma_2^2 + \mu_2^2, \sigma_1\sigma_2\rho + \mu_1\mu_1)$$

so the left-hand side is straightforward. The right hand side can be easily derived by noting the well-known relations

$$E_{\theta}(Y|Z) = \mu_2 + \rho \sigma_2 (Z - \mu_1) / \sigma_1$$

$$E_{\theta}(Y^2|Z) = (\mu_2 + \rho \sigma_2 (Z - \mu_1) / \sigma_1)^2 + (1 - \rho^2) \sigma_2^2$$

leading to the new paremater values being simply regular functions of the sufficient statistic T but evaluated at the expected values in the E-step of the algorithm. See Example 2.4.6 for details.

Exercise

In the bivariate normal Example 2.4.6.

- complete the *E*-step by finding $E(Z_i|Y_i)$, $E(Z_i^2|Y_i)$, and $E(Z_iY_i|Y_i)$.
- verify the *M*-step by showing that

$$\boldsymbol{E}_{\theta}\mathbf{T} = (\mu_1, \mu_2, \sigma_1^2 + \mu_1^2, \sigma_2^2 + \mu_2^2, \rho\sigma_1\sigma_2 + \mu_1\mu_2).$$

Hint: Use the conditional distributions of the two dimensional Gaussian vectors so Z|Y is Gaussian, $E(a + bX)^2 = a^2 + 2abE(X) + b^2E(X^2)$, E(YZ|Y) = YE(Z|Y).

Multivariate normal (Gaussian) distribution

Everyone believes in Gauss distribution: experimentalists believing that it is a mathematical theorem, mathematicians believing that it is an empirical fact.

Quote attributed to Henri Poincaré by de Finetti. However, Cramer attributes the remark to Lippman and quoted by Poincaré; *Gabriel Lippman* – a Nobel prize winner in physics, *Henri Poincaré* – a mathematician, theoretical physicist, engineer, and a philosopher of science

The multivariate normal or Gaussian random vector **X** = (X₁,..., X_p) is given by density

$$f(\mathbf{x}) = \frac{1}{\left(2\pi\right)^{p/2}\sqrt{det(\mathbf{\Sigma})}} \exp\left(-\frac{1}{2}(\mathbf{x}-\mu)^{T}\mathbf{\Sigma}^{-1}(\mathbf{x}-\mu)\right)$$

that is characterized by: a vector parameter μ and a matrix parameter Σ .

 The notation X ~ N_p(μ, Σ) should be read as "the random vector X has multivariate normal (Gaussian) distribution with the vector parameter μ and the matrix parameter Σ."

Multivariate normal (Gaussian) distribution – properties

We often drop the dimension p from the notation writing $X \sim \mathcal{N}(\mu, \Sigma)$.

- The vector parameter μ is equal to the mean of X and the matrix parameter Σ is equal to the covariance matrix of X.
- Any coordinate X_i of **X** is also normally distributed, i.e. X_i has $\mathcal{N}(\mu_i, \sigma_i^2)$.
- If $X \sim N_p(\mu, \Sigma)$ and A is a $q \times p$ (non-random) matrix, $q \leq p$, (and the matrix A is of the rank q), then

$$\mathsf{AX} \sim \mathcal{N}_q(\mathsf{A} \boldsymbol{\mu}, \mathsf{A} \boldsymbol{\Sigma} \mathsf{A}^{\mathcal{T}})$$

Subsetting from coordinates of MND

Any vector made of a subset of different coordinates of X is also multivariate normal with the corresponding vector mean and covariance matrix.

More precisely, if $\mathbf{X} \sim \mathcal{N}_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and

$$\mathbf{X} = \left[egin{array}{c} \mathbf{X}_1 \ \mathbf{X}_2 \end{array}
ight]$$

are partitioned into sub-vectors $X_1 : q \times 1$ and $X_2 : (p-q) \times 1$ then with

$$\mu = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} \text{ and } \mathbf{\Sigma} = \begin{bmatrix} \mathbf{\Sigma}_{11} & \mathbf{\Sigma}_{12} \\ \mathbf{\Sigma}_{21} & \mathbf{\Sigma}_{22} \end{bmatrix}$$
$$\mathbf{X}_1 \sim \mathcal{N}_q(\mu_1, \mathbf{\Sigma}_{11}) \text{ and } \mathbf{X}_2 \sim \mathcal{N}_{p-q}(\mu_2, \mathbf{\Sigma}_{22})$$

Conditional distributions

If $\mathbf{X} \sim \mathcal{N}_{\rho}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and

$$\mathbf{X} = \left[\begin{array}{c} \mathbf{X}_1 \\ \mathbf{X}_2 \end{array} \right]$$

are partitioned into sub-vectors $X_1 : q \times 1$ and $X_2 : (p-q) \times 1$ then with

$$\mu = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}$$
 and $\Sigma = \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix}$

the conditional distribution of X_1 given X_2 , is

$$\mathbf{X}_1 | \mathbf{X}_2 = \mathbf{x}_2 \sim \mathcal{N}_q(\mu_1 + \mathbf{\Sigma}_{12} \mathbf{\Sigma}_{22}^{-1} (\mathbf{x}_2 - \mu_2), \mathbf{\Sigma}_{11} - \mathbf{\Sigma}_{12} \mathbf{\Sigma}_{22}^{-1} \mathbf{\Sigma}_{21})$$

Regression reinterpretation of conditional distributions

Vector \mathbf{X}_1 given \mathbf{X}_2 forms a regression model

$$\mathbf{X}_1 = \mathbf{a} + \mathbf{D}\mathbf{X}_2 + \boldsymbol{\epsilon},$$

where

- The constant term $\mathbf{a} = \mu_1 \mathbf{\Sigma}_{12} \mathbf{\Sigma}_{22}^{-1} \mu_2$
- The design matrix $\mathbf{D} = \mathbf{\Sigma}_{12} \mathbf{\Sigma}_{22}^{-1}$
- The error term $\epsilon \sim \mathcal{N}_q(0, \boldsymbol{\Sigma}_{11} \boldsymbol{D}\boldsymbol{\Sigma}_{21})$

Special case $X_1 = (X_i, X_j)$ – calculating partial covariances

Partial covariance matrix

Recall that the partial covariance 2×2 matrix Σ_{ij} of (X_i, X_j) is given at the covariance of their distribution conditionally all other variables:

$$(X_i, X_j) = (a_i, a_j) + \mathbf{D}\mathbf{X}_2 + \epsilon,$$

- The constant term $(a_i, a_j) = (\mu_i, \mu_j) \sum_{12} \sum_{22}^{-1} \mu_2$, where \sum_{12} is made of the *i*th and *j*th rows of of Σ without the *i*th and *j*th coordinates in these rows, thus it is $2 \times (p-2)$ matrix, \sum_{22} the covariance matrix with out the *i*th and *j*th columns and rows, thus it is a $(p-2) \times (p-2)$ matrix, μ_2 the mean values with the μ_i and μ_i values dropped.
- The 2 × (p 2) design matrix **D** = $\Sigma_{12}\Sigma_{22}^{-1}$,
- The error term $\epsilon \sim N_q(0, \Sigma_{ij}), \Sigma_{11} D\Sigma_{21}, \Sigma_{21}$ is the transpose of Σ_{12}
- The(*i*, *j*)th partial correlation θ_{ij} is the correlation in the covariance matrix Σ_{ij}, i.e. of the diagonal term divided by square roots of the diagonal terms.