Discussion of some exercises

November 23, 2023

Predicting with Bayes

- In a Bayesian model where $X_{1}, \ldots, X_{n}, X_{n+1}$ are (conditionally on the unobservable θ) i.i.d. distributed according to $f(x \mid \theta)$, moreover θ is distributed according π.
- The predictive distribution is the distribution of X_{n+1}.
- The posterior predictive distribution is the conditional distribution of X_{n+1} given X_{1}, \ldots, X_{n}.
- f and π are $\mathcal{N}\left(\theta, \sigma_{0}^{2}\right)$ and $\mathcal{N}\left(\theta_{0}, \tau_{0}^{2}\right)$. Evaluate predictive and posterior predictive distributions and discuss their limiting behavior when $n \rightarrow \infty$.
- Model

$$
f\left(x_{1}, \ldots, x_{n}, x_{n+1} \mid \theta\right)=\prod_{i=1}^{n+1} f\left(x_{i} \mid \theta\right) \propto \exp \left(-\sum_{i=1}^{n+1}\left(x_{i}-\theta\right)^{2} /\left(2 \sigma_{0}^{2}\right)\right)
$$

- Prior

$$
\pi(\theta) \propto \exp \left(-\theta^{2} /\left(2 \tau_{0}^{2}\right)\right)
$$

- In the terms of random variables

$$
\left(X_{1}, \ldots, X_{n+1} \mid \Theta=\theta\right) \sim \mathcal{N}\left(\theta, \sigma_{0} I_{n+1}\right), \quad \Theta \sim \mathcal{N}\left(0, \tau_{0}^{2}\right)
$$

- What is the joint distribution $\left(X_{1}, \ldots, X_{n+1}, \Theta\right)$?

Example - normal distribution with missing data

- Let $\left(Z_{1}, Y_{1}\right), \ldots,\left(Z_{n}, Y_{n}\right)$ be i.i.d. as $\mathcal{N}\left(\mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, \rho\right)$.
- Suppose that some of the Z_{i} and some of the Y_{i} are missing as follows:
- For $1 \leq i \leq n_{1}$ we observe both Z_{i} and Y_{i}, for $n_{1}+1 \leq i \leq n_{2}$, we observe only Z_{i}, and for $n_{2}+1 \leq i \leq n$, we observe only Y_{i}. The observed data are denoted by S.
- In this case a set of sufficient statistics for the complete data is

$$
T=\left(\bar{Z}, \bar{Y}, \overline{Z^{2}}, \overline{Y^{2}}, \overline{Z Y}\right)
$$

- One wants to reconstruct the missing parts needed for T from the incomplete data given in S.

The EM algorithm for exponential families

Theorem 2.4.3

For a canonical exponential family generated by (T, h) satisfying the conditions of Theorem 2.3.1. Let $S(X)$ be any statistic, then the EM algorithm consists of the alternation

$$
\dot{A}\left(\theta_{\text {new }}\right)=E_{\theta_{\text {old }}}(T(X) \mid S(X)=s) .
$$

Example (cont.): We can see that

$$
\dot{A}(\theta)=E_{\theta} T=\left(\mu_{1}, \mu_{2}, \sigma_{1}^{2}+\mu_{1}^{2}, \sigma_{2}^{2}+\mu_{2}^{2}, \sigma_{1} \sigma_{2} \rho+\mu_{1} \mu_{1}\right)
$$

so the left-hand side is straightforward. The right hand side can be easily derived by noting the well-known relations

$$
\begin{aligned}
E_{\theta}(Y \mid Z) & =\mu_{2}+\rho \sigma_{2}\left(Z-\mu_{1}\right) / \sigma_{1} \\
E_{\theta}\left(Y^{2} \mid Z\right) & =\left(\mu_{2}+\rho \sigma_{2}\left(Z-\mu_{1}\right) / \sigma_{1}\right)^{2}+\left(1-\rho^{2}\right) \sigma_{2}^{2}
\end{aligned}
$$

leading to the new paremater values being simply regular functions of the sufficient statistic T but evaluated at the expected values in the E-step of the algorithm. See Example 2.4.6 for details.

Exercise

In the bivariate normal Example 2.4.6.

- complete the E-step by finding $E\left(Z_{i} \mid Y_{i}\right), E\left(Z_{i}^{2} \mid Y_{i}\right)$, and $E\left(Z_{i} Y_{i} \mid Y_{i}\right)$.
- verify the M-step by showing that

$$
E_{\theta} \mathbf{T}=\left(\mu_{1}, \mu_{2}, \sigma_{1}^{2}+\mu_{1}^{2}, \sigma_{2}^{2}+\mu_{2}^{2}, \rho \sigma_{1} \sigma_{2}+\mu_{1} \mu_{2}\right)
$$

Hint: Use the conditional distributions of the two dimensional Gaussian vectors so $Z \mid Y$ is Gaussian, $E(a+b X)^{2}=a^{2}+2 a b E(X)+b^{2} E\left(X^{2}\right), E(Y Z \mid Y)=Y E(Z \mid Y)$.

Multivariate normal (Gaussian) distribution

Everyone believes in Gauss distribution: experimentalists believing that it is a mathematical theorem, mathematicians believing that it is an empirical fact.

Quote attributed to Henri Poincaré by de Finetti. However, Cramer attributes the remark to Lippman and quoted by Poincaré; Gabriel Lippman - a Nobel prize winner in physics, Henri Poincaré - a mathematician, theoretical physicist, engineer, and a philosopher of science

- The multivariate normal or Gaussian random vector $\mathbf{X}=\left(X_{1}, \ldots, X_{p}\right)$ is given by density

$$
f(\mathbf{x})=\frac{1}{(2 \pi)^{p / 2} \sqrt{\operatorname{det}(\boldsymbol{\Sigma})}} \exp \left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)
$$

that is characterized by: a vector parameter $\boldsymbol{\mu}$ and a matrix parameter $\boldsymbol{\Sigma}$.

- The notation $\mathbf{X} \sim \mathcal{N}_{p}(\mu, \boldsymbol{\Sigma})$ should be read as "the random vector \mathbf{X} has multivariate normal (Gaussian) distribution with the vector parameter $\boldsymbol{\mu}$ and the matrix parameter $\boldsymbol{\Sigma}$."

Multivariate normal (Gaussian) distribution properties

We often drop the dimension p from the notation writing $\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.

- The vector parameter $\boldsymbol{\mu}$ is equal to the mean of \mathbf{X} and the matrix parameter $\boldsymbol{\Sigma}$ is equal to the covariance matrix of \mathbf{X}.
- Any coordinate X_{i} of \mathbf{X} is also normally distributed, i.e. X_{i} has $\mathcal{N}\left(\mu_{i}, \sigma_{i}^{2}\right)$.
- If $\mathbf{X} \sim \mathcal{N}_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and \mathbf{A} is a $q \times p$ (non-random) matrix, $q \leq p$, (and the matrix \mathbf{A} is of the rank q), then

$$
\mathbf{A X} \sim \mathcal{N}_{q}\left(\mathbf{A} \boldsymbol{\mu}, \mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^{T}\right)
$$

Subsetting from coordinates of MND

Any vector made of a subset of different coordinates of X is also multivariate normal with the corresponding vector mean and covariance matrix.

More precisely, if $\mathbf{X} \sim \mathcal{N}_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and

$$
\mathbf{X}=\left[\begin{array}{l}
\mathbf{X}_{1} \\
\mathbf{X}_{2}
\end{array}\right]
$$

are partitioned into sub-vectors $\mathbf{X}_{1}: q \times 1$ and $\mathbf{X}_{2}:(p-q) \times 1$ then with

$$
\begin{gathered}
\boldsymbol{\mu}=\left[\begin{array}{l}
\boldsymbol{\mu}_{1} \\
\boldsymbol{\mu}_{2}
\end{array}\right] \text { and } \boldsymbol{\Sigma}=\left[\begin{array}{ll}
\boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\
\boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22}
\end{array}\right] \\
\mathbf{X}_{1} \sim \mathcal{N}_{q}\left(\mu_{1}, \boldsymbol{\Sigma}_{11}\right) \text { and } \mathbf{X}_{2} \sim \mathcal{N}_{p-q}\left(\boldsymbol{\mu}_{2}, \boldsymbol{\Sigma}_{22}\right)
\end{gathered}
$$

Conditional distributions

If $\mathbf{X} \sim \mathcal{N}_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and

$$
\mathbf{X}=\left[\begin{array}{l}
\mathbf{X}_{1} \\
\mathbf{X}_{2}
\end{array}\right]
$$

are partitioned into sub-vectors $\mathbf{X}_{1}: q \times 1$ and $\mathbf{X}_{2}:(p-q) \times 1$ then with

$$
\boldsymbol{\mu}=\left[\begin{array}{l}
\boldsymbol{\mu}_{1} \\
\boldsymbol{\mu}_{2}
\end{array}\right] \quad \text { and } \quad \boldsymbol{\Sigma}=\left[\begin{array}{ll}
\boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\
\boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22}
\end{array}\right]
$$

the conditional distribution of \mathbf{X}_{1} given \mathbf{X}_{2}, is

$$
\mathbf{X}_{1} \mid \mathbf{X}_{2}=\mathbf{x}_{2} \sim \mathcal{N}_{q}\left(\boldsymbol{\mu}_{1}+\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1}\left(\mathbf{x}_{2}-\boldsymbol{\mu}_{2}\right), \boldsymbol{\Sigma}_{11}-\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21}\right)
$$

Regression reinterpretation of conditional distributions

Vector \mathbf{X}_{1} given \mathbf{X}_{2} forms a regression model

$$
\mathbf{X}_{1}=\mathbf{a}+\mathbf{D} \mathbf{X}_{2}+\boldsymbol{\epsilon},
$$

where

- The constant term $\mathbf{a}=\boldsymbol{\mu}_{1}-\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\mu}_{2}$
- The design matrix $\mathbf{D}=\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1}$
- The error term $\boldsymbol{\epsilon} \sim \mathcal{N}_{q}\left(0, \boldsymbol{\Sigma}_{11}-\boldsymbol{D} \boldsymbol{\Sigma}_{21}\right)$

Special case $\mathbf{X}_{1}=\left(X_{i}, X_{j}\right)$ - calculating partial covariances

Partial covariance matrix

Recall that the partial covariance 2×2 matrix $\boldsymbol{\Sigma}_{i j}$ of $\left(X_{i}, X_{j}\right)$ is given at the covariance of their distribution conditionally all other variables:

$$
\left(X_{i}, X_{j}\right)=\left(a_{i}, a_{j}\right)+\mathbf{D} \mathbf{X}_{2}+\boldsymbol{\epsilon}
$$

- The constant term $\left(a_{i}, a_{j}\right)=\left(\mu_{i}, \mu_{j}\right)-\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\mu}_{2}$, where $\boldsymbol{\Sigma}_{12}$ is made of the i th and j th rows of of $\boldsymbol{\Sigma}$ without the i th and j th coordinates in these rows, thus it is $2 \times(p-2)$ matrix, $\boldsymbol{\Sigma}_{22}$ the covariance matrix with out the i th and j th columns and rows, thus it is a $(p-2) \times(p-2)$ matrix, μ_{2} the mean values with the μ_{i} and μ_{j} values dropped.
- The $2 \times(p-2)$ design matrix $\mathbf{D}=\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1}$,
- The error term $\boldsymbol{\epsilon} \sim \mathcal{N}_{q}\left(0, \boldsymbol{\Sigma}_{i j}\right), \boldsymbol{\Sigma}_{11}-\boldsymbol{D} \boldsymbol{\Sigma}_{21}, \boldsymbol{\Sigma}_{21}$ is the transpose of $\boldsymbol{\Sigma}_{12}$
- The (i, j) th partial correlation $\theta_{i j}$ is the correlation in the covariance matrix $\boldsymbol{\Sigma}_{i j}$, i.e. of the diagonal term divided by square roots of the diagonal terms.

