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Recall

The meaning/interpretation of functional data;
How the real data, which is indeed discrete and finite
dimensional, can be put through some analysis involving
smoothing and fitting on basis.
Established the necessary mathematical language to
perform the analysis of such data.
Next step: predicting scalar response on a basis of
functional covariates
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The functional linear model

A typical linear regression model is stated as:

yi =

p∑
j=0

xijβj + εi , for i = 1, . . . ,N,

where yi are response, and xij , the covariates.

A natural functional linear regression model is expressed
as:

yi =

p∑
j=0

xi(tj)βj + εi , for i = 1, . . . ,N.

In case the collection {tj} becomes very dense, we could
interpret the above as

yi =

∫
xi(t)β(t) dt + εi , for i = 1, . . . ,N.
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Goal: To estimate the function β(t) using the finite number
of observations {yi : i = 1, . . . ,N}.

Clearly this is an ill–posed, or an underdetermined problem
(compare the issue with finite dimensional case when
p > N).

Notice: It is possible to solve for β (non-unique) with εi = 0.
In fact, there will be infinitely many solutions (mostly).
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Ways to fix the issue of non–uniqueness:
Use a basis expansion of β:

β(t) =
K∑

k=1

ckφk (t),

where {φk} are known basis functions, and (try to) keep K
smaller than N. This boils the problem down to the usual
linear regression we are familiar with.

Use a principal component analysis to reduce the
dimensionality of covariates. This also reduces the
problem to a finite dimensional regression problem.
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Canadian Weather Data
When regressing log-precipitation on the complete temperature
profile, and use Fourier basis with five components, we get the
following estimate for β(t)
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Another interesting way to estimate a β(t), by also demanding
certain smoothness criterion, in addition to using the basis, is
to introduce a smoothness penalty.

Minimize

PENSSEλ(α0, β)

=
N∑

i=1

(
yi − α0 −

∫
xi(t)β(t) dt

)2

+ λ

∫
[Lβ(t)]2 dt

where L is a differential operator (controlled by the user).

By using the basis expansion of β, we can boil the above down
to constrained minimisation in finite dimensions.

Note: Choice of smoothing parameter λ is very crucial
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Using fPCA for linear regression
Using fPCA, we obtain

xi(t) = x(t) +
∑
j≥0

cij ξj(t),

where ξj are the eigen functions of the sample covariance
operator, and cij =

∫
ξj(t) (xi(t)− x(t)) dt .

Then, regression on the principal component scores takes the
following form:

yi = β0 +
∑
j≥0

cijβj + εi

and to reconcile this with our proposed functional linear
regression model, we could interpret

β(t) =
∑
j≥0

βj ξj(t)
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Statistical Testing

Since in each scenario, the problem reduces to an appropriate
finite dimensional problem, we can look back at the usual finite
dimensional analysis and use the same analysis.
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Proposed model:
The most generalised version of functional response model
takes the following form:

yi(t) = β0(t) +
Q∑

j=1

xij(t)βj(t) + ε(t)

which can be rewritten as:

y(t) = Z(t)β(t) + ε(t) . . . [M]

where y(t) is the vector of functions {yi(t)}; Z(t) is the
functional design matrix; β(t) is the vector of coefficient
functions, and ε(t) is the vector of functional noise.
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Define:
r(t) = y(t)− Z(t)β(t) . . . [R]

The, β(t) is estimated by way of the following constrained
minimisation problem:

Minimise

LMSSE(β) =

∫
[r(t)]′ r(t) dt +

Q∑
j=1

λj

∫
[Ljβj(t)]2 dt

where Lj are appropriate operations (differentiation) to impose
smoothness criteria.
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Key: Again use basis expansion of βj(t) in terms of {θkj(t)} as
follows:

βj(t) =

Kj∑
k=1

bkj θkj(t) = [θj(t)]′ bj (in matrix notation)

We could rewrite the residual [R] as

r(t) = y(t)− Z(t) Θ(t) b

where b = (b′1, . . . ,b′Q)′ is the column vector of size
K = K1 + · · ·+ KQ, and

Θ(t) =


θ′1 0 · · · 0
0 θ′2 · · · 0
...

...
. . .

...
0 0 · · · θ′Q
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Estimating and tesing b

After the simplification by invoking the basis assumption
the the fitting criterion of minimising LMSSE(β) reduces to
minimising LMSSE(β) with few unknown b, which is
achieved by using simple calculus.

However, since all the expressions in LMSSE involve
integrals over some parameter space, the practical
implementation of estimating b is achieved by numerical
methods, and is implemented in the fda package.

Since the estimation has reduced to a finite dimensional
computation, the corresponding testing procedure thus
remains largely the same as finite dimensional, except that
the computations now involve various integrals, which
again are incorporated in the fda package.
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