
Empirical Principal Component FPC for the model Empirical vs. theoretical FPC

Functional Principal Component Analysis

May 14, 2018



Empirical Principal Component FPC for the model Empirical vs. theoretical FPC

Outline

1 Empirical Principal Component

2 FPC for the model

3 Empirical vs. theoretical FPC



Empirical Principal Component FPC for the model Empirical vs. theoretical FPC

The least square optimality for functional data

Suppose we observe functions x1, x2, ..., xn. It is not necessary
to view these functions as random, but we can think of them as
the observed realizations of random functions residing in some
separable Hilbert space H.
We assume that the data have been centered, i.e.

∑n
i=1 xi = 0.

(The estimator of the mean function.)
Fix an integer p < N. We think of p as being much smaller than
N, typically a single digit number.

We want to find an orthonormal basis u1,u2, ...,up such that

Ŝ2 =
N∑

i=1

‖xi −
p∑

k=1

〈xi ,uk 〉uk‖2 (1)

is minimized.
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Reduction to the finite dimensional problem

Once a basis minimizing Ŝ2 is found,
∑p

k=1〈xi ,uk 〉uk is an
approximation to xi .

For the p we have chosen, this approximation is uniformly
optimal, in the sense of minimizing Ŝ2. This means that instead
of working with infinitely dimensional curves xi , we can work with
p-dimensional vectors

xi = [〈xi ,u1〉, 〈xi ,u2〉, ...., 〈xi ,up〉, ]T (2)

This is the central idea of functional data analysis, as to perform
any practical calculations we must reduce the dimension from
infinity to a finite number.
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Empirical functional principal components

The functions uj are called collectively the optimal empirical
orthonormal basis or natural orthonormal components, the
words empirical and natural emphasizing that they are computed
directly from the functional data.

The functions u1,u2, ...,up minimizing Ŝ2 are equal (up to a sign)
to the normalized eigenfunctions, v̂1, v̂2, ..., v̂p of the sample
covariance operator, i.e. Ĉ(ui) = λ̂iui where λ̂1 ≥ λ̂2 ≥, ...,≥ λ̂p.

The eigenfunctions v̂i are called the empirical functional
principal components (EFPC) of the data x1, x2, ..., xN . The v̂i
are thus the natural orthonormal components and form the
optimal empirical orthonormal basis.
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Example from the Canadian Weather Data

The following code shows utilization of the fda for computing the EFPC for the temperature data

#Example of the principle component analysis

daybasis65 = create.fourier.basis(c(0, 365), nbasis=65,period=365)
harmaccelLfd = vec2Lfd(c(0,(2*pi/365)ˆ2,0), c(0, 365))
harmfdPar = fdPar(daybasis65, harmaccelLfd, lambda=1e5)

daytempfd = smooth.basis(day.5, CanadianWeather$dailyAv[,,"Temperature.C"],
daybasis65, fdnames=list("Day", "Station", "Deg C"))$fd

daytemppcaobj = pca.fd(daytempfd, nharm=4, harmfdPar)

op = par(mfrow=c(2,2))
plot.pca.fd(daytemppcaobj, cex.main=0.9)

dev.off()
plot(daytemppcaobj$harmonics)

##Extract the eigenvalues
ev=daytemppcaobj$values

plot(ev)
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Graphical illustration of the principle components

The principal component functions or harmonics are shown as perturbations of the mean, which is the solid
line. The +s show what happens when a small amount of a principal component is added to the mean, and
the -s show the effect of subtracting the component.
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FPC and Karhunen-Loeve expansion

Suppose X are zero mean random function in H having the
same distribution as X .
Parallel to empirical optimization we can ask which orthonormal
elements v1, ..., vp in H minimize

E‖X −
p∑

i=1

〈X , vi〉vi‖2. (3)

The solution is given by the eigenfunctions vi of the covariance
operator C.
They allow for the optimal representation of X .
The functional principal components (FPC) are defined as the
eigenfunctions of the covariance operator C of X .
The representation

X =
∞∑
i=1

〈X , vi〉vi (4)

is called the Karhunen-Loeve expansion
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Scores

The inner product 〈Xi , vj 〉 =
∫

Xi (t)vj (t)dt is called the j th score of Xj .

It is interpreted as the weight of the contribution of the FPC vj to the curve Xj .

##plot the scores
par(mfrow=c(1,3))
plot(daytemppcaobj$scores[,1], daytemppcaobj$scores[,2], xlab="1st PC scores", ylab="2nd PC scores")
plot(daytemppcaobj$scores[,1], daytemppcaobj$scores[,3], xlab="1st PC scores", ylab="3rd PC scores")
plot(daytemppcaobj$scores[,2], daytemppcaobj$scores[,3], xlab="2nd PC scores", ylab="3rd PC scores")
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Practical considerations

We often estimate the eigenvalues and eigenfunctions of C, but the interpretation of these quantities as
parameters, and their estimation, must be approached with care.

The eigenvalues must be identifiable, so we must assume that λ1 > λ2 > ... .

In practice, we can estimate only the p largest eigenvalues, and assume that
λ1 > λ2 > ... > λp > λp+1 which implies that the first p eigenvalues are nonzero.

The eigenfunctions vj are defined by C(vj ) = λj vj , so if vj is an eigenfunction, then so is avj , for any
nonzero scalar a (by definition, eigenfunctions are nonzero). The vj are typically normalized, so that
‖vj‖ = 1, but this does not determine the sign of vj .

Thus if v̂j is an estimate computed from the data, we can only hope that ĉj v̂j is close to vj , where

ŝj = sign(〈vj , vj 〉)

Note that ŝj cannot be computed form the data, so it must be ensured that the statistics we want to work
with do not depend on the ŝj .

We define the estimated eigenelements by:

ĈN (v̂j ) = λ̂j v̂j j = 1, 2, ...,N (5)
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Analysis of the Brownian Bridge case

Since for the Brownian Bridge we have explicit
representation of its eigenvalues and eigenfunction it is a
convenient example to compare empirical and theoretical
FPC.
A Brownian bridge is a continuous-time stochastic process
B(t) whose probability distribution is the conditional
probability distribution of a Wiener process W (t) subject to
the condition that W (T ) = 0, so that the process is pinned
at the origin at both t = 0 and t = T . More precisely:

Bt := (Wt |WT = 0), t ∈ [0,T ]
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Simulation of the Brownian Bridge

The following code is pretty straight forward, we establish the grid first (line 4 to 6), generate a random noise (line 9)
and pin it to 0 at time 0 (line 11 to 13). Only one sample has been generated in this case, this can be modified
depending on the user’s needs.

#Simulation an independent sample of a Brownian bridge
#over an equidistant grid

n=2000 #size of the equidistant one dimensional grid
MC=1 #Monte Carlo sample size
t=matrix(seq(0,1,by=1/n),nrow=1) #grid

ZZ=matrix(rnorm(n*MC),ncol=n)/sqrt(n) #random noise

#Simulating Brownian Bridge that starts from zero
ZeC=matrix(rep(0,MC),ncol=1)
BB=cbind(ZeC,t(apply(ZZ,1,cumsum)))-matrix(apply(ZZ,1,sum),ncol=1)%*%t

#Ploting trajectories
quartz()
plot(t,BB[1,],type=’l’,ylim=c(min(BB),max(BB)))
legend(0.1,max(BB)-1*0.1*max(BB),1,text.col =1)
for(i in 2:MC)
{

lines(t,BB[i,],type=’l’,col=i)
legend(0.1,max(BB)-i*0.1*max(BB),i,text.col =i)

}
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