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Linear operators - a generalization of matrices

Let H be a linear (sub)space of square integrable
functions. A linear and continuous function Ψ : H 7→ H is
called a (linear) operator.
Let L be the space of continuous linear operators on H.
We note that if x is a square integrable function also Ψ(x)
(Ψx for shorthness) is a function.

Note and discuss the notational subtleties: (Ψx)(t), Ψx(t),
and Ψ(x(t)) which does not make sense, why?
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Examples

Examples of operators: Consider functions on the interval [0, 1]. Each
of the following is a linear operator. Their continuity has to be addressed
separately and often requires to restrict the domain of the operator.

Ψx = x - the identity operator.
Ψx(t) =

∫ t
0 x(u) – integral operator.

Ψx(t) = x ′(t) – derivative operator
Ψx(t) = x(1− t) – symmetric vertical reflection
Ψx(t) = −x(t) – symmetric horizontal reflection
Ψx(t) =

∫
x(u)y(t − u) du – convolution operator

Discuss vector analogs of these operators, represent them as matrices.
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Simplest infinite dimensional operators

An operator Ψ ∈ L is said to be compact if there exist two orthonormal
bases {vj} and {fj} and a real sequence {λj} converging to zero, such
that:

Ψ(x) =
∞∑
i=1

λj〈x , vj〉fj , x ∈ H. (1)

This representation is called the singular value decomposition (SVD).
The special case is when vj = fj .

A compact operator admitting such a representation is said to be a
Hilbert-Schmidt operator if

∑∞
j=1 λ

2
j <∞.
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Spectral decomposition

An operator Ψ ∈ L is said to be, respectively, symmetric and positive
definite if:

〈Ψ(x), y〉 = 〈x ,Ψ(y)〉, 〈Ψ(x), x〉 ≥ 0 x , y ∈ H (2)

A symmetric positive-definite Hilbert-Schmidt operator Ψ admits the
decomposition:

Ψ(x) =
∞∑
j=1

λj〈x , vj〉vj x ∈ H, (3)

with orthonormal vj which are the eigenfunctions of Ψ, i.e. Ψ(vj ) = λjvj .



Review of the model Data

Eigenfunctions and eigenvalues

Recall the concept of eigenvalues and eigenvectors of a matrix.

Propose a natural extension of this concept to the case of space of
functions and an operator acting on them.

Check that the functions appearing in the spectral decomposition are
actually eigenfunctions of the operator. What are the corresponding
eigenvalues?
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Kernel operator

Recall that by H (or by L2) we denote the set of measurable real-valued
functions defined on [0,1] satisfying

∫ 1
0 x2(t)dt <∞. It is a Hilbert space

with the inner product:

〈x , y〉 =

∫
x(t)y(t)dt . (4)

An important class of operators in L2 are the integral operators defined
by:

Ψ(x)(t) =

∫
ψ(t , s)x(s)ds, x ∈ L2, (5)

with the real kernel ψ(·, ·).
If ψ(s, t) = ψ(t , s) and

∫∫
Ψ(t , s)x(t)x(s) ≥ 0, the integral operator Ψ is

symmetric and positive-definite, and it follows that

ψ(t , s) =
∞∑
j=1

λjvj (t)vj (s), ∈ L2([0, 1]× [0, 1]) (6)
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The model of random functional data

Let X be a H-valued random function.
If there is µ ∈ H such that E〈X , y〉 = 〈µ, y〉 for all y ∈ H,
then µ is called the expectation of X and denoted by EX .
The expectation commutes with continuous operators, i.e.
if Ψ ∈ L and X is integrable, then EΨ(X ) = Ψ(EX ).

For a random function X , the covariance operator of X is
defined by:

C(y) = E [〈X − EX , y〉(X − EX )], y ∈ H. (7)

(We assume implicitly that the right hand side is well
defined and also often, as before, we write simply Cy
instead of C(y).)
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More explicit view on mean

Let assume that we do not question the change of order of linear
operations in all the following derivations.

The mean:

E〈X , y〉 = E
∫ 1

0
X (u)y(u) du

=

∫ 1

0
E(X (u))y(u) du.

Thus if we define µ(u) = E(X (u)), and µ ∈ H, then the expectation can
be viewed as simply pointwise expectation of a random function.
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... and on covariance

For ]the covariance operator of X

Cy(t) = E [〈X − EX , y〉]

= E
(∫ 1

0
(X (u)− EX (u)) y(u) du(X (t)− EX (t))

)
=

∫ 1

0
E ((X (u)− EX (u)) (X (t)− EX (t))) y(u) du

=

∫ 1

0
Cov(X (u),X (t))y(u) du.

Thus the covariance operator can be viewed as a kernel operator with
the kernel c(t , u) being pointwise covariance of random functions.

There are some technical aspects, why the mean and the covariance
are not introduced this way but for all practical understanding, it is good
to think about them this way.
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Further properties

The covariance operator C is symmetric and
positive-definite, with eigenvalues λi satisfying:

∞∑
i=1

λi = E‖X − EX‖2 <∞. (8)

Thus it admits the SVD (or, in other terminology, the
spectral decomposition).
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A sample of functions and their sample charectiristics

Let X1, X2, ..., XN be observed H-valued random functions.

The mean can be estimated naturally by

µ̂N (t) =
1

N

N∑
k=1

Xk (t).

Similarily, the covariance kernel c(t,s) can be estimated by:

ĉ(t, s) =
1

N

N∑
k=1

(Xk (t)− µ̂N (t))(Xk (s)− µ̂N (s)).

Alternatively, one can estimate eigenvalues of the spectral decomposition for the covariance operator using
eigenvectors and their eigenvalues for sample covariance.
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Log-precipitation data example

Raw data
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Raw mean and covariance

Raw mean (left) and covariance (right)

Some data smoothing is needed.
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Smoothing using fda package - Section 5.4

We follow the steps of the textbook using the script.
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Smoothed log-precipitation data

Smoothed data using the fda package and optimal filter
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Mean and covariance for smoothed data

Raw mean (left) and covariance (right)

Some data smoothing is needed.
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Rationale behind smoothing

When we smooth, we indirectly assume that the data of
interest come distorted by a certain noise:

yobs(t) = y(t) + ε(t), t ∈ [t0, t1].

This noise is not of interest and needs to be filtered.
The validity of such assumptions is the case dependent
and often is frequently decide on an ad hoc basis.
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