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Usual linear regression model

y = X α + ε

Corresponding assumptions:

ε ∼ N (0,Σ) (major); mostly, we
assume that Σ = I.

In fda, the data is usually some realisation of a stochastic
process, as against a random variable. Therefore, we’re mostly
interested in:

y(t) = f (t) + ε(t),

where we wish to estimate f (t), given the observation y(t).
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Comparing the finite and the infinite dimensional models

Usual regression
Mostly linear, or functional
form of the dependence is
known.

Estimation of the
coefficients relies on the
distributional assumptions
on noise.

fda

Functional form of the
dependence is not known,
thus need some
assumptions: the
functional space and the
basis
What should be the
distribution of noise?

We know how to define mean and (co)variance of random
vectors, but now we need to define the same for infinite
dimensional random elements.
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A simplest model for the data space is Hilbert space– a
collection of elements which has infinitely many (but countable)
basis elements, and one can define an inner product between
any pair of elements.

For example:
`2 = {(a1,a2,a3, . . .) : ai ∈ R, and

∑
i≥1 a2

i <∞}.

Looks similar to Rn; and we know how to define standard
normal on Rn. So what about standard normal on `2?

Let us recall how to characterise standard normal distribution
on Rn:

density is given by (2π)−n/2 exp
(
− x2

2

)
or, all linear combinations are Normal with appropriate
mean and variance.



A simplest model for the data space is Hilbert space– a
collection of elements which has infinitely many (but countable)
basis elements, and one can define an inner product between
any pair of elements.
For example:
`2 = {(a1,a2,a3, . . .) : ai ∈ R, and

∑
i≥1 a2

i <∞}.

Looks similar to Rn; and we know how to define standard
normal on Rn. So what about standard normal on `2?

Let us recall how to characterise standard normal distribution
on Rn:

density is given by (2π)−n/2 exp
(
− x2

2

)
or, all linear combinations are Normal with appropriate
mean and variance.



A simplest model for the data space is Hilbert space– a
collection of elements which has infinitely many (but countable)
basis elements, and one can define an inner product between
any pair of elements.
For example:
`2 = {(a1,a2,a3, . . .) : ai ∈ R, and

∑
i≥1 a2

i <∞}.

Looks similar to Rn; and we know how to define standard
normal on Rn. So what about standard normal on `2?

Let us recall how to characterise standard normal distribution
on Rn:

density is given by (2π)−n/2 exp
(
− x2

2

)
or, all linear combinations are Normal with appropriate
mean and variance.



A simplest model for the data space is Hilbert space– a
collection of elements which has infinitely many (but countable)
basis elements, and one can define an inner product between
any pair of elements.
For example:
`2 = {(a1,a2,a3, . . .) : ai ∈ R, and

∑
i≥1 a2

i <∞}.

Looks similar to Rn; and we know how to define standard
normal on Rn. So what about standard normal on `2?

Let us recall how to characterise standard normal distribution
on Rn:

density is given by (2π)−n/2 exp
(
− x2

2

)

or, all linear combinations are Normal with appropriate
mean and variance.



A simplest model for the data space is Hilbert space– a
collection of elements which has infinitely many (but countable)
basis elements, and one can define an inner product between
any pair of elements.
For example:
`2 = {(a1,a2,a3, . . .) : ai ∈ R, and

∑
i≥1 a2

i <∞}.

Looks similar to Rn; and we know how to define standard
normal on Rn. So what about standard normal on `2?

Let us recall how to characterise standard normal distribution
on Rn:

density is given by (2π)−n/2 exp
(
− x2

2

)
or, all linear combinations are Normal with appropriate
mean and variance.



Density?

Density is always defined with respect to the Lebesgue
measure,

which does not exist when the dimension of the
space goes to infinity.
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Linear combinations?

Adaptable even to infinite dimensions.

Just need to know what
kind of linear combinations should be admissible.
One can define Gaussian distribution on `2 with mean m, and
covariance C as long as

m ∈ `2,

and C is a linear operator1 on `2 such that∑
i≥1

〈Cei ,ei〉 <∞,

where {ei} is an orthonormal basis of `2. But why?

1Discuss. Compare with matrices.
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A quick explanation

Let us consider X = (X1,X2, . . .) an `2-valued random variable
distributed as standard Gaussian.

Meaning {Xi}i≥1 are i.i.d.
standard normal. Implying that C = I on `2.Clearly,∑

i≥1

〈Iei ,ei〉 =∞.

What is the magnitude/size of such a Gaussian element?

E
(
‖X‖2

)
= E

∑
i≥1

X 2
i

=∞

What about ‖X‖2 in general? ‖X‖2 =∞ almost surely. One
can actually show that ‖X‖2 <∞, whenever C is trace class.
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Covariance between various linear combinations
In finite dimensions:
On Rn, let Y ∼ N (µ,Σ), then 〈a,Y 〉 and 〈b,Y 〉 are both
normally distributed, with covariance 〈Σa,b〉.

In infinite dimensions:
On `2, let X ∼ N (m, C), then 〈a,X 〉 and 〈b,X 〉 are both
normally distributed, with covariance 〈Ca,b〉, i.e.,

〈Ca,b〉 = E[〈a,X 〉〈b,X 〉]

After some analysis, one can conclude that

C =
∑
i≥1

λi φi ⊗ φi (Mercer’s Theorem)

for some ONB {φi}. (compare with matrices, and discuss L2

representation).
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In fact, there exist a sequence {ξn} of zero-mean, uncorrelated
random variables such that E(ξ2

i ) = λi , and

Y =
∑
i≥1

ξi φi (Karhunen–Loéve expansion)

Special case

In case the functional data is realisation of certain stochastic
process, then the mean m is a mean function m(t) = E(X (t)),
and the covariance operator becomes a covariance kernel,
C(s, t) = cov(X (s)X (t)).
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sample mean;
sample covariance
functional PCA (with Karhunen–Loéve –using probe
functions)


