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Downloading R-package and first steps

Statistical R-package available for free download here
Available on any PC platform (Mac, Windows, Linux).
Worry free and fast downloading procedure (a couple of
minutes).
We will be working in the command line window of R (most
direct way of accessing R-package).
No experience is required – all of the code that will be
needed will be provided on our webpage!
There some so-called R front-ends (such R Commander or
R-Studio or Jupyter) that ease writing more complex
programming in R – while you can use and utilize them, I
assume only a very basic R installation with the primitive
copy-and-paste-to-the-command-line approach as a
method of running the programs.

http://www.r-project.org/
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Getting access to ‘fda’ package

After installing R, any package available on the r-project
webpage can be easily downloaded and installed on individual
computers.

This also applies to ’fda’ package.

The instructions for downloading and launching a package differ
depending on platform.

All are however straightforward and take no longer than a
minute.
In the package are all scripts that have been used in our main
textbook.
system.file(’scripts’, package=’fda’)
# [1] "/Users/mats-ksp/Library/R/3.4/library/fda/scripts"
dir( "/Users/mats-ksp/Library/R/3.4/library/fda/scripts")
# [1] "afda-ch01.R" "afda-ch02.R" "afda-ch03.R" "afda-ch04.R" "afda-ch05.R" "afda-ch06.R"
# [7] "afda-ch07.R" "fda-ch01.R" "fda-ch02.R" "fda-ch03.R" "fda-ch07.R" "fda-ch08.R"
#[13] "fda-ch13.R" "fda-ch17.R" "fdarm-ch01.R" "fdarm-ch02.R" "fdarm-ch03.R" "fdarm-ch04.R"
#[19] "fdarm-ch05.R" "fdarm-ch06.R" "fdarm-ch07.R" "fdarm-ch08.R" "fdarm-ch09.R" "fdarm-ch10.R"
#[25] "fdarm-ch11.R"
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Example of a very simple R session with fda package

This is based on the script "afda-ch01.R" availabe in the fda
package.
If the following lines of code do not create the error messages then the
package is properly installed:

daybasis65 <- create.fourier.basis(rangeval=c(0, 365), nbasis=65)

# ----------- set up the harmonic acceleration operator ----------

harmaccelLfd365 <- vec2Lfd(c(0,(2*pi/365)ˆ2,0), c(0, 365))

# --------- create fd objects for temp. and prec. ---------------

# First check the distribution
qqnorm(CanadianWeather$dailyAv[,,"Temperature.C"], datax=TRUE)
# Consistent with a strong annual cycle
# plus weaker normal noise

daytempfd <- with(CanadianWeather, smooth.basis(day.5,
dailyAv[,,"Temperature.C"],
daybasis65, fdnames=list("Day", "Station", "Deg C"))$fd )

plot(daytempfd, axes=FALSE)
axisIntervals(1)
axis(2)
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Smoothed Canadian weather

Few lines of the code from the previous result should produce
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Canadian average annual weather cycle

Description: Daily temperature and precipitation at 35 different locations
in Canada averaged over 1960 to 1994.

CanadianWeather is a list with the following components:

dailyAv: a three dimensional array c(365, 35, 3) summarizing data collected at 35 different weather
stations in Canada on the following:
[,,1] = [,, ’Temperature.C’]: average daily temperature for each day of the year
[,,2] = [,, ’Precipitation.mm’]: average daily rainfall for each day of the year rounded to 0.1 mm.
[,,3] = [,, ’log10precip’]: base 10 logarithm of Precipitation.mm after first replacing 27 zeros by 0.05
mm.
place: Names of the 35 different weather stations in Canada whose data are summarized in
’dailyAv’. These names vary between 6 and 11 characters in length. By contrast, daily[[”place”]]
which are all 11 characters, with names having fewer characters being extended with trailing blanks.
province: names of the Canadian province containing each place
coordinates: a numeric matrix giving ’N.latitude’ and ’W.longitude’ for each place.
region: Which of 4 climate zones contain each place: Atlantic, Pacific, Continental, Arctic.
monthlyTemp: A matrix of dimensions (12, 35) giving the average temperature in degrees celcius
for each month of the year.
monthlyPrecip: A matrix of dimensions (12, 35) giving the average daily precipitation in milimeters
for each month of the year.
geogindex: Order the weather stations from East to West to North
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A sample from one station

Extracting temperature and plotting it for the first station
a=CanadianWeather$dailyAv[,,"Temperature.C"]
plot(a[,1],type="l")
The result
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A vector or a function

We have seen an example of data for which a functional
data analysis will be applied.
If one considers a single location, a sample is a 365
dimensional vector of averaged daily temperatures.
The vector of this size can be easily analyzed using
multivariate analysis.
Why do we want to use functions?
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Vectors and orthogonality – review

A picture to have in mind

Inner product.
Orthogonality.
Dimension.
Orthogonal projections
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Inner product

Defintion.
Properties.
Geometric interpretation.
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Orthogonality

Defintion.
Pythagorean Theorem.
Geometric interpretation.
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Dimension

Definition of a linear basis.
Orthogonal bases.
Dimension.
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Linear operations - matrices

Linear transformation (linear operator).
Representation as a matrix.
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Linear regression – example of vector valued conceptualization

We have response variables Y = (Y1, . . . ,Yn) and a matrix
of regressor (explanatory variables) X = [xij ]

n,r
i=1,j=1.

The assumed model is

Y = Xβ + ε.

Here β is an unknown vector of the parameters and ε is a
random noise.
The goal is to estimate β given the set of observations
(Y,X).
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Least squares

In the least square approach, one estimates β by
minimizing the Eucledean distance between the
observations and the linear model

‖y− Xβ‖2.
In other words, we want to find a point β̂ such that Xβ̂ is
the closet point to the observations y among all Xβ’s.
It follows from the principles of linear algebra that Xβ̂ is the
orthogonal projection ŷ of the observation vector y to the
space of spanned by the columns of the design matrix X.
This projection can be expressed as the matrix
P = X(X′X)−1X′, so that

ŷ = Py

β̂ = (X′X)−1X′y
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Why functions?

Since our data are vectors (always!), why to bother about
functions?

Because:
The vector based analysis is invariant on the permutations of coordinates of vectors. Think about
the analysis of the Canadian weather data after randomly permuting coordinates.
The dimension reduction: high dimensional data maybe represented using few functions (one
function has infinitely many coordinates so the size does not matter).
Certain problems can be only expressed in the functional terms: increase of the sampling
frequency of the data, search for an efficient way of representing certain structural features in the
data – selection of the basis and its optimality (think images).
Possibility of using operations that are specific for functions: derivatives, integrals.
Certain physical phenomena are conveniently described through functions and their derivatives:
response to a signal.
Finally, why not? The theory is not that much different.
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Conceptualization - Hilbert space

Hilbert space: A collection of vectors with all properties the
same as in Euclidean space except finite dimensionality.
Functions constitute a Hilbert space (there are also other Hilbert
spaces).
A Hilbert space with a countable a basis {ek , k ∈ Z}) with inner
product 〈·, ·〉 which generates norm ‖ · ‖
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Samples in functional spaces

An important example is the Hilbert space L2 = L2([0,1]), which
is the set of measurable real-valued functions x defined on [0,1]
satisfying

∫ 1
0 x(t)2dt <∞.

Observations are random functions i.e. random variables defined
on some common probability space (Ω,A,P) with values in L2.
We say that X is integrable if E‖X‖ <∞ and square integrable if
E‖X‖2 <∞.
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Fourier bases

There are several versions of Fourier bases but they all express
in terms of sines and cosines.
The most standard is

{
√

2 sin(2πnx); n ∈ N} ∪ {
√

2 cos(2πnx); n ∈ N} ∪ {1}.

Two alternatives are the sine basis

{
√

2 sin(πnx); n ∈ N}

and the cosine basis

{
√

2 cos(πnx); n ∈ N} ∪ {1}.
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Fourier bases in R - a direct approach

# Four ie r bas is
nb=45

n=2002 # s ize o f the e q u i d i s t a n t one dimensional g r i d
h=1 / n # increment s ize
t =matrix ( seq ( h , 1 , by=h ) , ncol =1) # g r i d

Fbase=matrix (0 , ncol=n , nrow=nb ) # mat r i x o f bas is values

Sn=matrix (2∗ ( 1 : f loor ( nb / 2 ) ) , ncol =1)
Cn=matrix (2∗ ( 1 : ce i l ing ( nb / 2))−1 ,ncol =1)

Fbase [ Sn , ] = sqrt ( 2 )∗sin ( p i∗Sn%∗%t ( t ) ) # s in i n bas is
Fbase [ Cn , ] = sqrt ( 2 )∗cos ( p i∗ (Cn−1)%∗%t ( t ) ) #cos i n bas is
Fbase [ 1 , ] = Fbase [ 1 , ] / sqrt ( 2 )

plot ( t , Fbase [ 2 , ] , type= ” l ” , col =2 , y lab= ” ” )
l ines ( t , Fbase [ 1 , ] , type= ” l ” , col= ” red ” )
for ( i i n 3 :9 )
{
l ines ( t , Fbase [ i , ] , type= ” l ” , col= i )
}
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Elements of basis and the fit to a function

The first nine elements of the basis are shown in Figure (left).
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Figure: Fourier basis – (left). A function (in black) and its
approximation by an expansion in the Fourier basis (in red) – (right).
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The code and the theory – least squares

One important benefit of using these basis is availability of effective computational algorithm, the Fast
Fourier Transform (FFT), for evaluation of the basis expansion coefficients.

However, in our considerations, we will not benefit greatly from this algorithm so we rather compute the
coefficient in a more direct way as shown in the next code.

#Test f u n c t i o n and i t s p l o t
f = t (8∗exp(−5000∗ ( t−1/ 2) ˆ2 )+ sin (30∗ t ) )
plot ( t , f , type= ” l ” )
#Computation o f c o e f f i c i e n t s

Cf= f%∗%t ( Fbase )∗h

#Computation o f expansion ( p r o j e c t i o n s )
Pf=Cf%∗%Fbase

# P lo t o f the p r o j e c t i o n
l ines ( t , Pf , type= ” l ” , col= ’ red ’ )

We can see from the code that it is just the regular least square method applied to the functions.
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More on the least squares in the expansion of a function

O-U basis

Coefficients of expansion.

Pythagorean theorem and the optimality of the reminder.
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Ploynomial bases

It follows from the Stone-Weirstrass theorem that every continuous function defined on [0, 1] can be
uniformly approximated as closely as desired by a polynomial function.

Thus at the first sight, it seems reasonable to consider polynomial bases.

An obvious normalized while not orthonormal basis is the following sequence of monomials

{
√

2n + 1 xn ; n ∈ N0}, (1)

where N0 = N ∪ {0}.
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Ploynomial bases

The elements of this basis are shown in Figure and computed using the following code.

# P l o t t i n g monomial bas is
nb=45
n=2002
h=1 / n
t =matrix ( seq ( h , 1 , by=h ) , ncol =1) # g r i d

n=dim ( t ) [ 1 ]

i =0
Mono=matrix (1 , ncol=nb , nrow=n )
Mono [ , 1 ] = sqrt (2∗ i +1)∗matrix (1 , ncol =1 ,nrow=n )

for ( i i n 1 : ( nb−1))
{

Mono [ , i +1 ]= ( ( ( 2∗ i +1 ) ˆ (1 / (2∗ i ) ) )∗ t ) ˆ i
}
Max=max(Mono [ , 1 : 1 5 ] )
Min=min (Mono [ , 1 : 1 5 ] )
plot ( t , Mono [ , 1 ] , type= ’ l ’ , y l im=c ( Min ,Max) , y lab= ’ ’ )
for ( i i n 2 :15)
{

l ines ( t , Mono [ , i ] , type= ’ l ’ , col= i )
}
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Graphs
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The monomial basis
How to make these polynomials orthogonal (orthonormal)?
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Gram-Schmidt orthonormalization

For a sequence of linearly independent elements hn ∈ H,
n ∈ N0, H is some Hilbert space, the Gram-Schmidt
orthonormalization of hn defines an orthonormalized vectors en,
n ∈ N0, through the following recurrence

e0 = h0/‖h0‖
en+1 = αnen + βn+1hn+1,n ∈ N0,

where

αn = −βn+1〈en,hn+1〉, β2
n+1 =

1
‖hn+1‖2 − |〈en,hn+1〉|2

.
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Orthonormalization of polynomials

It is clear that the sequence of the polynomials obtained through this procedure has increasing order.

The coefficients of these polynomials can be obtained algebraically through the following simple recurrent
linear procedure.

Let hk , k = 1, . . . , n, be represented as a sequence of numerical vectors ak , k = 1, . . . , n, in a certain
basis (not necessarily orthonormal and its form is irrelevant for the procedure).

Moreover let H =
[
〈hi , hj 〉

]n

i,j=0
.

Define b0 = a0/‖h0‖ = a0/
√

h00, which is the representation of the first vector of the G-S orthonormal
basis.

The second vector can be obtained by defining first

ãk = ak −
hk0

h00
a0, k = 1, . . . , n

H̃ =

[
hij −

hi0h0j

h00

]n

i,j=0

and then taking b1 = ã1/
√

h̃11 .

Moreover, to find the next vector b2, one applies the same procedure (but by one dimension smaller) to ã
and H̃ in place of a and H.
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Implementation in R

This approach is implemented in the following routine.

# Implementat ion o f Gram−Schmidt o r t hono rma l i za t i on
gso= function (A,H)
{

nb=dim (H ) [ 1 ]
k=dim (A ) [ 1 ]
HH=H
AA=A
B=A #the k x nb , k>=nb mat r i x output w i th columns being or thonormal ized columns of A
i =1
B[ , 1 ] =AA[ , 1 , drop=F ] /HH[ 1 , 1 ] #the f i r s t ou tput vec to r normal ized
while ( nb>1){

H1=HH[ 1 , , drop=F ] # row 1 x nb
AA=AA−(H1%x%AA[ , 1 , drop=F ] ) /HH[ 1 , 1 ] # k x nb
HH=HH−t (H1)%∗%H1 /HH[ 1 , 1 ]
HH=HH[ 2 : nb , 2 : nb , drop=F ]
AA=AA[ , 2 : nb , drop=F ]
i = i +1
B[ , i ]=AA[ , 1 , drop=F ] / sqrt (HH[ 1 , 1 ] ) #subsequent column to the output
nb=nb−1
}

B
}
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Back to polynomials

We note that for the monomial basis the matrix of the inner products is given by

H =

[√
2i + 1

√
2j + 1

i + j + 1

]

Thus the following program computes the orthonormal basis.

#G−S or thono rma l i za t i on
nb=12
A=diag ( nb )

I = t ( rep (1 , nb ) )
S=0 : ( nb−1)
H=1 / ( I%x%S+1 / 2+ t ( I%x%S+1 / 2 ) )
S=( sqrt (2∗S+1))%∗%t ( sqrt (2∗S+1))
H=H∗S

B=gso (A,H)

# P l o t t i n g orthonormal polynomia l bas is

PBase=matrix (1 , ncol=nb , nrow=n )
PBase=Mono [ , 1 : nb ]%∗%B
Max=max( PBase [ , 1 : nb ] )
Min=min ( PBase [ , 1 : nb ] )
plot ( t , PBase [ , 1 ] , type= ’ l ’ , y l im=c ( Min ,Max) , y lab= ’ ’ )
for ( i i n 2 :10)
{

l ines ( t , PBase [ , i ] , type= ’ l ’ , col= i )
}
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Basis vs Orthornormal basis
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Instability and approximation

The resulting orthonormal basis was illustrated in Figure.

Unfortunately, the choice of initial monomials is not wise due to the numerical instability of the
orthonormalization of so similarly looking functions.

Due to this the routine crashes after 13 iterations.

The routine for computing the expansion of a function is similar as before.

#The t e s t f u n c t i o n
plot ( t , f , type= ” l ” )

#Computation o f c o e f f i c i e n t s

Cf= f%∗%t ( PBase )∗h

#Computation o f expansion ( p r o j e c t i o n s )
Pf=Cf%∗%PBase

# P lo t o f the p r o j e c t i o n
l ines ( t , Pf , type= ” l ” , col= ’ red ’ )
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Performance
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The approximation using 13 elements of the orthonormalized
polynomial basis – (left). We see that 13 polynomials perform
poorly.
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Stabilizing

To have more fair comparison with the Fourier expansion we need more elements of the orthonormal basis
and for this one has to start with a better polynomial basis.

In fact, it will be more numerically stable to start with the following functions

h0(x) = 1,

h1(x) = x − 1/2,

hn(x) =

√
2

2e

n−1∏
i=0

(
2
√

e n
(

x −
i

n − 1

))
, n ≥ 2,

as their provide more variability as shown in the plot, where hn are normalized before being drawn. A nu-
merically stable initial polynomial basis – (left) and the orthonormalized output from the G-S procedure (right).
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Performance with more basis functions

The orthonormal polynomial is again attempted using the previous G-S routine and this time 45 elements is
obtained and 16 of their elements are shown in Figure (left).

We observe that the polynomial expansion still does not perform as well as the trigonometric expansion.
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16 elements of the orthonormalized polynomial basis – (left). An
approximation of the test function with all 45 elements– (right).
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Conclusions

An important lesson from the polynomial basis example is that a choice of the basis may greatly affect the
performance of numerical algorithms, even if in the mathematical terms this should not create a problem.

In fact we have seen that the unique polynomial basis on interval [0, 1] could not be effectively computed if
the initial choice of the polynomials was not screened for the variability (the case of the monomials).

The numerical problem disappeared by considering ‘less linearly dependent’ initial basis.

From the mathematical point of view the two bases were equivalent but for computational purposes one
performed poorly and the other was quite reasonable.

Approximation using monomial polynomials is not numerically effective but through a more suitable initial
choice of the linear basis to be orthogonalized we arrived to better numerical stability of the Gram-Schmidt
orthonormalization.
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Analytical solution to the problem of polynomial ON basis

The good news is that for the case of the orthonormal
basis of polynomials on an interval we have an analytical
solution to the problem and thus the problem of stability
discussed in the previous slides can be avoided.
It can be derived analytically also using the Gram-Schmidt
orthogonalization process to the basis 1, x , x2, ....
It will be convenient to present the solution on interval
[−1,1] rather than on [0,1] but the following transformation
leads from the [−1,1] case to the case of [0,1]:

f̃ (y) =

√
2

2
f
(

y + 1
2

)
.
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Legendre polynomials

The elements of the resulting basis for [−1, 1] are known as the Legendre polynomial and their recurrent
definition is given next.

Definition

The Legendre polynomials, denoted by Lk (x), are the orthogonal polynomials in L2(−1, 1). The three-term
recurrence relation for the Legendre polynomials reads

L0(x) = 1,

L1(x) = x,

(n + 1)Ln+1(x) = (2n + 1)xLn(x)− nLn−1(x), n ≥ 1.

Theorem

For n,m ≥ 0 and x ∈ [−1, 1] we have

∫ 1

−1
Lm(x)Ln(x) dx =

2

2n + 1
δmn,

and an explicit form of the Legendre polynomials as

Ln(x) =
n∑

k=0

(−1)k
(

n
k

)2 ( 1 + x

2

)n−k ( 1− x

2

)k
.
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The first six

The theorem above shows that the Legendre polynomials are orthogonal in L2(−1, 1).

The first six Legendre polynomials are:

L0(x) = 1,

L1(x) = x,

L2(x) =
1

2
(3x2 − 1),

L3(x) =
1

2
(5x3 − 3x),

L4(x) =
1

8
(35x4 − 30x2 + 3),

L5(x) =
1

8
(63x5 − 70x3 + 15x).

The above polynomials are not normalized but from Theorem it follows that L̃n =
√

n + 1/2 Ln are
normalized.
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The bases over the whole real line

While restricting to an interval and considering functions only on an
interval is often practically valid, it may happen that restricting to a
specific interval will appear artificial. One could question why this
interval is chosen not other.

Here one has two possible ways of treating such functions within the
framework of Hilbert spaces:

either limit oneself to the functions that are square
integrable over the entire line
or consider a weighted inner product that decrease effects
of the functional tails.

Here we only announce an example of the second approach, which
leads to an interesting little theory.
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The weighted inner product and Gaussian random variable

By LΦ
2 , we denote the Hilbert space of square integrable functions on R

with respect the Gaussian measure Φ(dx) = φ(x)dx , where
φ(x) = e−x2/2/

√
2π so the inner product of f , g ∈ Lφ2 is given by

〈f , g〉φ =

∫
R

f (x)g(x)φ(x) dx .

Let Z be a standard normal variable, then for f ∈ LΦ
2 the random

variable f (Z ) is has finite second moment and the set of all random
variables of such form constitutes a closed subspace of L2 that is
isomorphic to LΦ

2 , where isomorphism is given by

E(f (Z )g(Z )) = 〈f , g〉φ.
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Bases of polynomials – Hermite polynomials

Since all moments of a standard normal random variable are finite, all
polynomials are in LΦ

2 . Moreover, they constitute a dense linear
subspace of LΦ

2 . Recall the formula for the moments of the standard
normal distribution

EZ 2k =
(2k)!

2k k !
.

Consequently, Mk (x) =
√

2k k !/(2k)!zk ’s form normalized basis in LΦ
2 .

Definition

The Hermite polynomials Hk , k ∈ N0 are the orthonormal elements in LΦ
2

obtained by the Gram-Schmidt orthonormalization procedure applied to Mk ,
k ∈ N0.
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Bases of polynomials – Hermite polynomials

Since the Gram-Schmidt orthonormalization produces HN as a linear
combination of Mk , k = 0, 1, . . . ,N thus HN is a polynomial of order N
and it is orthogonal to Mk , k = 0, 1, . . . ,N − 1.

The first six Hermite polynomials:

H0(x) = 1,

H1(x) = x ,

H2(x) = (x2 − 1)/
√

2,

H3(x) = (x3 − 3x)/
√

6,

H4(x) = (x4 − 6x2 + 3)/
√

24,

H5(x) = (x5 − 10x3 + 15x)/
√

120.

Notice that H2k are having only even powers of x while H2k+1 are having
only odd numbered ones, it follows, for example from the next slide.
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Bases of polynomials – Hermite polynomials

Let Pn(x) = Hn(x)/αn, where αn is the coefficient of Hn at xn. The
polynomials Pn’s are referred to as the un-normalized Hermite
polynomials. We note the following convenient representation of Pn and
Hn.

Theorem

The Hermite polynomials are of the form

Pn(x) = (−1)nex2/2 dn

dxn

(
e−x2/2

)
Hn(x) =

(−1)n

√
n!

ex2/2 dn

dxn

(
e−x2/2

) (2)

We have also an explicit form the Hermit polynomials as given in

Pn(x) = n!

[n/2]∑
k=0

(−1)k

22k

xn−2k

(n − 2k)!k !
.
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