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Functional Data Analysis

Assignment 3

Eigenfunctions

Assignments constitute part of the examination and must be handed in time. You are
asked to hand in the solutions during a week following the week on which the assignment
has been discussed in classes. You can submit either an electronic copy or a hard copy of
your work. In the latter case, staple your solutions together.



Problem 1 – Basic formulation of FDA model
The set of all square integrable functions is denoted by L2 or simply H. Let
X,X1, X2, ... be random functions that are square integrable. We call µ the ex-
pectation of a random function X and denote it by EX if µ ∈ H and such that
E〈X, y〉 = 〈µ, y〉 for all y ∈ H.
Further, for a random function X, the covariance operator of X is defined by:

C(y) = E[〈X − EX, y〉(X − EX)], y ∈ H, (1)

under the assumption that the right hand side is well-defined.

• Consider a sequence of random numbers Y1, . . . , YN drawn from a certain dis-
tribution given by the cdf F . Recall the concept of empirical distribution F̂ .
Argue that F̂ is a random square integrable function. What is the expectation
of F̂?

• Find the covariance operator for the empirical distribution F̂ .

• Write the covariance operator in the case when the original sample has been
drawn from uniform distribution.

Problem 2 – The eigenfunction for the covariance operator
Recall the definition of the covariance matrix for a random vector. This matrix is
positive definite.

• Formulate the condition of the positive definiteness for a matrix and suggest
its equivalent for the covariance operator for functional data.

• For a matrix, define the concept of eigenvalue/vector. What can you say about
the eigenvalues and eigenvector of positive definite matrices.

• What would be an equivalent of eigenvalue/vector pair for the covariance op-
erator?

The eigenfunctions vi of the covariance operator C allow for the optimal represent-
ation of corresponding X. The functional principal components (FPC) are defined
as the eigenfunctions of the covariance operator C of X. The representation

X =
∞∑
i=1

〈X, vi〉vi (2)

is called the Karhunen-Loeve expansion.

The inner product 〈Xi, vj〉 =
∫
Xi(t)vj(t)dt is called the jth score of Xj and is inter-

preted as the weight of the contribution of the FPC vj to the curve Xj. We often es-
timate the eigenvalues and eigenfunctions of C, but the interpretation of these quant-
ities as parameters, and their estimation, must be approached with care. The eigen-
values must be identifiable, so we must assume that λ1 > λ2 > .... In practice, we can



estimate only the p largest eigenvalues, and assume that λ1 > λ2 > ... > λp > λp+1

which implies that the first p eigenvalues are nonzero. The eigenfunctions vj are
defined by C(vj) = λjvj, so if vj is an eigenfunction, then so is avj, for any nonzero
scalar a (by definition, eigenfunctions are nonzero). The vj are typically normalized,
so that ‖vj‖ = 1, but this does not determine the sign of vj. Thus if v̂j is an estimate
computed from the data, we can only hope that ĉj v̂j is close to vj, where

ĉj = sign(〈v̂j, vj〉)

Note that ĉj cannot be computed form the data, so it must be ensured that the
statistics we want to work with do not depend on ĉj’s.
We define the estimated eigenelements by:

ĈN(v̂j) = λ̂j v̂j j = 1, 2, ..., N (3)

• Suppose that your data consists from the empirical distribution functions F̂i,
i = 1, . . . , n, that are computed for samples of the size 1000 on different occa-
sions for a certain variable over the population (the original data on which the
empirical distributions were evaluated are irrelevant here).

• Discuss the eigenfunctions and their empirical estimates for this case.

Problem 3 – Brownian Bridge Recall the concept of Brownian Motion or Wiener pro-
cess (limit of random walks plus central limit theorem). A Brownian bridge is a
continuous-time stochastic process B(t) whose probability distribution is the con-
ditional probability distribution of a Wiener process W (t) subject to the condition
that W (T ) = 0, so that the process is pinned at the origin at both t = 0 and t = T .
More precisely:

Bt := (Wt | WT = 0), t ∈ [0, T ]

Alternatively,

BT (t) = W (t)− tW (T )/T, t ∈ [0, T ],

where W is a standard Brownian motion.

1. Find the covariance operator for this process.

2. Do you see any connection with empirical distribution?

In the following figure, we have the graphs of brownian bridge being generated.



Figure 1: Brownian Motion



Figure 1 has been generated using the code in R described below.

1 #Simulat ion an independent sample o f a Brownian br idge
2 #over an equ i d i s t an t g r id
3
4 n=2000 #s i z e o f the equ i d i s t an t one dimens iona l g r id
5 MC=10 #Monte Carlo sample s i z e
6 t=matrix ( seq (0 , 1 , by=1/n) , nrow=1) #gr id
7
8
9 ZZ=matrix ( rnorm (n∗MC) , nco l=n) / sq r t (n) #random no i s e
10
11 #Simulat ing Brownian Bridge that s t a r t s from zero
12 ZeC=matrix ( rep (0 ,MC) , nco l=1)
13 BB=cbind (ZeC , t ( apply (ZZ , 1 , cumsum) ) )−matrix ( apply (ZZ , 1 , sum) , nco l=1)%∗%t
14
15 #Plot ing t r a j e c t o r i e s
16 quartz ( )
17 p l o t ( t ,BB[ 1 , ] , type=’ l ’ , yl im=c (min (BB) ,max(BB) ) )
18 legend ( 0 . 1 ,max(BB) −1∗0.1∗max(BB) ,1 , t ex t . c o l =1)
19 f o r ( i in 2 :MC)
20 {
21 l i n e s ( t ,BB[ i , ] , type=’ l ’ , c o l=i )
22 legend ( 0 . 1 ,max(BB)− i ∗0 .1∗max(BB) , i , t ex t . c o l =i )
23 }

Here, the code is pretty straight forward, we establish the grid first (line 4 to 6),
generate a random noise (line 9) and pin it to 0 at time 0 (line 11 to 13). Only
one sample has been generated in this case, this can be modified depending on the
user’s needs.

Now that we can generate the Brownian bridge, we can practice some concepts
and their estimates on this example. In fact the Brownian bridge is one of few cases
for which the eigenfunctions are known in an analytical form

vk(t) =
√

2 sin kπt

λk =
1

k2π2

• Verify that the above functions and values are indeed eigenvalue/function pairs.

• Verify that they are orthogonal.

• Write the process in their terms.

• Write the covariance operator in their terms.


