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Functional Data Analysis

Assignment 2

Splines and regularization

Assignments constitute part of the examination and must be handed in time. You are
asked to hand in the solutions during a week following the week on which the assignment
has been discussed in classes. You can submit either an electronic copy or a hard copy of
your work. In the latter case, staple your solutions together.



Problem 1 – B-splines In the lecture we have introduced B-splines as a basis for cubic
splines. They were defined as follows

• Assume ξ1, . . . , ξK internal knots and two endpoints ξ0 and ξK+1.

• Add three more knots that are equal to ξ0 and additional three knots that are
equal to ξK+1 for the total of K + 8 knots that from now are denoted by τi,
i = 1, . . . , K + 8.

• Define recursively functions Bi,m, that are splines of the m − 1th order of
smoothness (0 smoothness is discontinuity), i = 1, . . . , K + 8, m = 1, . . . , 4

• For the knots τi, i = 1, . . . , K+8 we define Bi,m, i = 1, . . . , K+8, m = 1, . . . , 4

• The piecewise constant (0-smooth), i = 1, . . . , K + 7,

Bi,1(x) =

{
1 if τi ≤ x < τi+1

0 otherwise

• Higher order of smoothness , i = 1, . . . , K + 8−m,

Bi,m(x) =
x− τi

τi+m−1 − τi
Bi,m−1(x) +

τi+m − x
τi+m − τi+1

Bi+1,m−1(x).

• Bi,4 are cubic order splines that constitutes basis for all cubic splines.

Consider an interval [0, 1] and only one internal point ξ1 = 1/2.

1. How many total knots for the cubic B-splines are considered according to the
above definition?

2. Write down explicitly all knots τi =’s.

3. Write down explicitly all functions for each recursion step.

4. Sketch the obtained functions.

5. Which of them constitutes the basis for all cubic splines with the given initial
internal knot ξ1 = 1/2.

6. How the computations change if ξ1 = ξ is another internal point, i.e. it is not
equal to 1/2?

7.1 Argue that cubic B-splines are still piecewise cubic polynomials on [0, 1] with
continuous second derivative, i.e. that they are indeed splines and that they
are linearly independent, i.e. one cannot be expressed by a linear combination
of others. Consequently, any piecewise cubic spline can be expressed by a linear
combination of the B-splines.

1This is a more challenging problem for PhD and more mathematically inclined students, for the rest
it is an extra (not required) problem.



Solution

1. There will be K + 8 = 9 knots, since K = 1.

2. The knots are: 0, 0, 0, 0, 1/2, 1, 1, 1, 1.

3. We have the following four recursion steps:

(a) 0-smoothness, m = 1. Piecewise constant functions Bi,0(x), i = 1, . . . , 8.
Only two are non-zero B4,1(x) = 1[0,1/2)(x) and B5,1(x) = 1[1/2,1)(x).

(b) 1-smoothness, m = 2. Piecewise linear continuous functions Bi,1(x), i =
1, . . . , 7. Only three are non-zero.

B3,2(x) =

{
1− 2x : x ∈ [0, 1/2)

0 : x ∈ [1/2, 1]

B4,2(x) =

{
2x : x ∈ [0, 1/2)

2− 2x : x ∈ [1/2, 1]

B5,2(x) =

{
0 : x ∈ [0, 1/2)

2x− 1 : x ∈ [1/2, 1]

(c) 2-smoothness, m = 3. Piecewise quadratic, continuously differentiable
functions Bi,2, i = 1, . . . , 6. These are non-zero for i = 2, . . . , 5.

B2,3(x) =

{
(1− 2x)2 : x ∈ [0, 1/2)

0 : x ∈ [1/2, 1]

B3,3(x) =

{
2x(2− 3x) : x ∈ [0, 1/2)

2(x− 1)2 : x ∈ [1/2, 1]

B4,3(x) =

{
2x2 : x ∈ [0, 1/2)

2(1− x)(3x− 1) : x ∈ [1/2, 1]

B5,3(x) =

{
0 : x ∈ [0, 1/2)

(2x− 1)2 : x ∈ [1/2, 1]

(d) 3-smoothness, m = 4. Piecewise cubic, twice continuously differentiable



function Bi,3, i = 1, . . . , 5. These are non-zero for all i = 1, . . . , 5.

B1,4(x) =

{
(1− 2x)3 : x ∈ [0, 1/2)

0 : x ∈ [1/2, 1]

B2,4(x) =

{
2x ((1− 2x)2 + (1− x)(2− 3x)) : x ∈ [0, 1/2)

2(1− x)3 : x ∈ [1/2, 1]

B3,4(x) =

{
2x2(3− 4x) : x ∈ [0, 1/2)

2(x− 1)2(4x− 1) : x ∈ [1/2, 1]

B4,4(x) =

{
2x3 : x ∈ [0, 1/2)

(1− x) ((2x− 1)2 + 2x(3x− 1)) : x ∈ [1/2, 1]

B5,4(x) =

{
0 : x ∈ [0, 1/2)

(2x− 1)3 : x ∈ [1/2, 1]

4. The following are the graphs of the above functions
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They were obtained using the package instead directly evaluating the above
functions. Here is R-code.
install.packages("splines")

library(splines)

help(splines)

library(help = "splines")

help(bs)

x=seq(0,1,by=0.01)

BS=bs(x,knots=c(0.5),intercept=TRUE)

plot(x,BS[,1])

plot(x,pmax(0,(1-2*x)^3)) #pointwise maximum

dev.set(2)

plot(x,pmax(0,(1-2*x)^3),col="red")

pdf("BSplines.pdf")

Colors=c("red","blue","green","brown","black")

plot(x,BS[,1], col=Colors[1], type=’l’,ylab="",lwd=2)

for(i in 2:5)

{

lines(x,BS[,i], col=Colors[i],lwd=2)

}

dev.off()

5. This is the case of m = 4, presented on the right hand side graph.

6. The main change is in the middle value of knots τ5. The rest of the compu-
tations will be analogous, although more tedious. Utilizing some software is



highly recommended.

7. The fact that each B-spline is indeed a spline is quite obvious since the first
order B-splines are indeed splines and the subsequent orders are obtained by
multiplication by a linear function.

The linear independence can be shown by recurrence. First, we note that the
first order splines B4,1, . . . , BK+1,1 are clearly linearly independent (why?). We
can argue that B3,2, . . . , BK+2,2 are linearly independent as follows. Any com-
bination linear of them is expressed as a product of a linear function and a
linear combination of the B-splines of the first order. However, for the first
B3,2, . . . , BK+1,2 to be dependent, a linear combination of B4,1, . . . , BK,1 mul-
tiplied by a linear function, would have to be zero, which is impossible. The
same applies to B4,2, . . . , BK+2,2. Eventually, by the identical argument and
recurrence, one gets linear independence of B1,4, . . . , BK+4,4. For details, if
interested, ask your instructors.



Problem 2 – Smoothing splines The following is a simplified account of using smooth-
ing splines to provide generalized additive fit to the regression problem with one
predictor

y = α + f(x) + ε.

• A spline basis method that avoids any knot selection

• It is using the maximal set of knots (knot is located at each location that is
given in the data)

• It is not overfitting because irregularity is penalized

• It is estimated by a linear function outside the range of predictors (smoothing
on the boundaries)

• It minimizes the penalized residual sum of squares

PRSS(f, λ) =
N∑
i=1

(yi − f(xi))
2 + λ

∫
f ′′(t)2dt

• λ = 0: any fit that interpolates data exactly.

• λ =∞: the least square fit (second derivative is zero)

• We fit by the cubic splines with the maximal number of knots equal to the
values of x’s and

f(x) =
N+4∑
j=1

γjBj(x) (1)

Bj(x) are natural splines: linear outside the data range and the cubic polyno-
mial inside of it.

• The solution has the form

γ̂ =
(
BTB + λΩB

)−1
BTy,

where

ΩB =

[∫
B′′i (t)B′′j (t) dt

]
• To see this substitute (??) to the PRSS – it becomes a regular least squares

problem

Discuss the following properties.

1. Explain why if λ = 0 the optimal fit will interpolate data exactly.

2. Explain why if λ = ∞ the optimal fit will be the regular least squares fit of
the regression line.



3. Substitute (??) to the PRSS and express the latter using vector γ = (γ1, . . . , γN+4)
and the matrices

B = [Bij] = [Bj(xi)] ,

ΩB =

[∫
B′′i (t)B′′j (t) dt

]
.

4.2 Compute the derivative of the PRSS with respect to γ and check that it is
equal to zero if

γ =
(
BTB + λΩB

)−1
BTy.

Solution

1. Taking λ = 0 and assuming that there is as many knot points as the size of
data, leads to a curve that goes through all the data points, i.e. data are
interpolated exactly.

2. Taking λ =∞ makes any non-linear but smooth fit penalized by infinity. Thus
the only fit that is acceptable and smooth is the linear one.

3. Let us denote B′′(t) = [B′′1 (t) . . . B′′N+4(t)], B = [Bij], where Bij = Bj(xi).
With this notation we have

PRSS = ‖y −Bγ‖2 + λ

∫
|B′′(t)γ|2dt

= (y −Bγ)T (y −Bγ) + λγTΩBγ.

4. We start with basic facts about the derivative of vector valued function de-
pending on vector valued argument. For such a function g(γ) we denote by g′

the matrix of partial derivatives ∂gi/∂γj, where index i runs through rows and
j through columns. We have the following product rule(

fTg
)′

= (f ′)
T

g + (g′)
T

f .

Let us now consider PRSS and apply this rule to it to get(
(y −Bγ)T (y −Bγ) + λγTΩBγ

)′
=
(

(y −Bγ)T (y −Bγ)
)′

+ λ
(
γTΩBγ

)′
= −2BT (y −Bγ) + 2λΩBγ.

Here we use that ΩB = ΩT
B. Thus the vector of derivatives is equal to zero if(

BB + λΩB

)
γ = BTy, which concludes the argument.

2This is a more challenging problem for PhD and more mathematically inclined students, for the rest
it is an extra (not required) problem.


