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Graphs and Trees – a poetic point of view

A dead tree, cut into planks and read from one end to
the other, is a kind of line graph, with dates down one

side and height along the other, as if trees, like
mathematicians, had found a way of turning time into

form.
Alice Oswald, British Poet
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Introduction

Unidirectional graph

A graph consists of a set of vertices (nodes), along with a set of
edges joining some pairs of the vertices.
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Introduction

Graph – a map of random dependencies

Let each vertex correspond to (represent) a random variable.

The graph gives a visual way of understanding the joint distribution of
the entire set of random variables.

In this approach, the absence of an edge between two vertices has a
special meaning: the corresponding random variables are conditionally
independent, given the other variables (represented by other vertices).

Such a graph does not tell a full story about the model but helps
understand dependencies and search for them.

If one specifies the model than the graphs plus some parameters for the
distributions completely defines the model.
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Introduction

Simple examples

Example: Let X1, X2, X3 be independent random variables.

What is the graph for
X = X1 + X2, Y = X2,
and Z = X2 + X3?

Y

Z

X

What is the graph for
X = X1 + X2,
Y = X1 + X3, and
Z = X2 + X3?

Y

Z

X

What is the graph for
X = X1, Y = X2, and
Z = X1 + X2 + X3?

?

Random graph methods October 16, 2018 6 / 37



Introduction

How to plot graphs in R

install.packages("igraph") #only if not installed before!!!
library(igraph)

edges = matrix(c("Y","Z","X","Z","X","Y"), nrow=3, ncol=2, byrow=T)
g = graph.edgelist(edges, directed=FALSE)
plot(g, edge.width=2, vertex.size=30, edge.color=’black’)

Y

Z

X
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Introduction

Specific models for distributions

Without further specification of the model is difficult to say what
kind of dependence one have.
Interpretation of graphs is difficult unless some distributional
structure is imposed.
One needs specify models for distributions to make complete
answers.
Two models are popular:

For continuous variables: Gaussian models
For discrete variables: Ising model ( Boltzman machines)
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Gaussian model

Fundamentals

We assume that the observations have a multivariate Gaussian distribution with
mean µ and covariance matrix Σ.

There are several important properties of Gaussian distributions:

The distribution is specified by pairwise covariances plus means.
Conditional distributions are always Gaussian.
The covariances of conditional distributions do not depend on the values of variables
on which conditioning is taken but only on Σ.
The independence of two variables (the lack of edge between corresponding nodes)
means that the conditional covariance (given all other variables) is zero – these
conditional covariances are called partial covariances .
The inverse of covariance Σ, often called the precision matrix

Θ = Σ−1

tells when partial covariances are zero (lack of an edge):

zero in the precision matrix is equivalent to zero of the corre-
sponding partial correlation
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Gaussian model

Partial covariances vs. the precision matrix
Partial correlation:

Partial correlation can be formulated in terms of the projections of the
observations to the subspaces

Let Xi and Xj be two coordinates in X = (X1, . . . ,Xn) and Xîj be the vector
of all remaining coordinates.
Yi - the residual from the orthogonal (the least square) projection of Xi to
Xîj .
Yj - the residual from the orthogonal projection of Xj to Xîj .
n × n matrices of partial covariances and partial correlations

PC = [〈Yi ,Yj〉] , R = [ρij ] =

[
〈Yi ,Yj〉
‖Yi‖‖Yj‖

]
Precision matrix:

The inverse Θ of covariance Σ of Xi ’s – the precision matrix

ρij = −
θij√
θiiθjj
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Gaussian model

Formulation of the problem

We can view our model as a graph with edges marked with values of partial
covariances and the vertices marked by the mean values.

By splitting conceptually the model into
1 Graph that represents dependencies,
2 Means
3 Partial covariances associated with each edge

we can divide the main problem of fitting the data to Gaussian density into three
parts

1 Estimate the means at each vertex
2 Estimate the structure of the graph
3 Given an estimate structure of the graph estimate partial covariances

The means can be simply estimated by the mean values of variable
corresponding to this vertex

Estimating the rest is difficult
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Gaussian model

Given the structure estimate the covariances

Given a number N of values of X ’s, we would like to estimate the correlations
(partial correlations) corresponding to an undirected graph that is representing
the non-zero partial correlations.

Suppose first that the graph is complete (fully connected).

It is well known that the maximum likelihood estimator of Σ is the sample covariance
matrix

S =
1
N

N∑
i=1

(xi − x̄)(xi − x̄)T

So in this case, the estimate is straightforward

Suppose now that there are some edges missing in the actual graph of the
partial covariances.

The problem of finding an estimate given these constraints is non-trivial.
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Gaussian model

Multivariate normal (Gaussian) distribution

Everyone believes in Gauss distribution: experimentalists believing that it is a
mathematical theorem, mathematicians believing that it is an empirical fact.

Quote attributed to Henri Poincaré by de Finetti. However,
Cramer attributes the remark to Lippman and quoted by Poincaré)
Gabriel Lippman – a Nobel prize winner in physics, Henri
Poincaré – a mathematician, theoretical physicist, engineer, and
a philosopher of science

The multivariate normal or Gaussian random vector X = (X1, . . . ,Xp) is
given by density

f (x) =
1

(2π)p/2√det(Σ)
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
that is characterized by: a vector parameter µ and a matrix parameter Σ.

The notation X ∼ Np(µ,Σ) should be read as “the random vector X has
multivariate normal (Gaussian) distribution with the vector parameter µ
and the matrix parameter Σ.”
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Gaussian model

Multivariate normal (Gaussian) distribution –
properties

We often drop the dimension p from the notation writing X ∼ N (µ,Σ).
The vector parameter µ is equal to the mean of X and the matrix
parameter Σ is equal to the covariance matrix of X.
Any coordinate Xi of X is also normally distributed, i.e. Xi has
N (µi , σ

2
i ).

If X ∼ Np(µ,Σ) and A is a q × p (non-random) matrix, q ≤ p, (and
the matrix A is of the rank q), then

AX ∼ Nq(Aµ,AΣAT )
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Gaussian model

Subsetting from coordinates of MND

Any vector made of a subset of different coordinates of X is also
multivariate normal with the corresponding vector mean and
covariance matrix.

More precisely, if X ∼ Np(µ,Σ) and

X =

[
X1
X2

]
are partitioned into sub-vectors X1 : q×1 and X2 : (p−q)×1 then with

µ =

[
µ1
µ2

]
and Σ =

[
Σ11 Σ12
Σ21 Σ22

]
X1 ∼ Nq(µ1,Σ11) and X2 ∼ Np−q(µ2,Σ22)
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Gaussian model

Conditional distributions

If X ∼ Np(µ,Σ) and

X =

[
X1
X2

]
are partitioned into sub-vectors X1 : q×1 and X2 : (p−q)×1 then with

µ =

[
µ1
µ2

]
and Σ =

[
Σ11 Σ12
Σ21 Σ22

]
the conditional distribution of X1 given X2, is

X1|X2 = x2 ∼ Nq(µ1 + Σ12Σ
−1
22 (x2 − µ2),Σ11 −Σ12Σ

−1
22 Σ21)
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Gaussian model

Regression reinterpretation of conditional distributions

Vector X1 given X2 forms a regression model

X1 = a + DX2 + ε,

where
The constant term a = µ1 −Σ12Σ

−1
22 µ2

The design matrix D = Σ12Σ
−1
22

The error term ε ∼ Nq(0,Σ11 − DΣ21)

Special case X1 = (Xi ,Xj) – calculating partial covariances
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Gaussian model

Partial covariance matrix

Recall that the partial covariance 2× 2 matrix Σij of (Xi ,Xj ) is given at the
covariance of their distribution conditionally all other variables:

(Xi ,Xj ) = (ai ,aj ) + DX2 + ε,

The constant term (ai , aj ) = (µi , µj )−Σ12Σ
−1
22 µ2, where Σ12 is made of the i th and j th

rows of of Σ without the i th and j th coordinates in these rows, thus it is 2× (p − 2) matrix,
Σ22 the covariance matrix with out the i th and j th columns and rows, thus it is a
(p − 2)× (p − 2) matrix, µ2 the mean values with the µi and µj values dropped.

The 2× (p − 2) design matrix D = Σ12Σ
−1
22 ,

The error term ε ∼ Nq(0,Σij ), Σ11 − DΣ21, Σ21 is the transpose of Σ12

The(i, j)th partial correlation θij is the correlation in the covariance matrix Σij , i.e. of the
diagonal term divided by square roots of the diagonal terms.
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Gaussian model

Estimation of the partial correlations

We divided the problem of estimation of the given model into parts

1 Estimate the means at each vertex

2 Estimate the structure of the graph

3 Given an estimate structure of the graph estimate partial covariances

We briefly discuss the third part.
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Gaussian model

Organisation of observations

The observations in a sample are arranged in a n× p matrix X where n
is the number of experimental units (the size of the sample) and p is
the number of variables.

X =



x11 x12 . . . x1k . . . x1p
x21 x22 . . . x2k . . . x2p
...

...
...

...
xj1 xj2 . . . xjk . . . xjp
...

...
...

...
xn1 xn2 . . . xnk . . . xnp



Random graph methods October 16, 2018 21 / 37



Gaussian model

Vector notation

X =



xT
1

xT
2
...

xT
j
...

xT
n


Row j in this matrix

xT
j = [xj1 xj2 . . . xjk . . . , xjp]

is a p-dimensional observation.
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Gaussian model

Sample mean vector

Given a sample mean for a variable i

x̄i =
1
n

n∑
k=1

xki

we define the sample mean vector as

x̄ =


x̄1
x̄2
...

x̄p


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Gaussian model

Sample covariance matrix

Given sample covariances

sij =
1

n − 1

n∑
k=1

(xki − x̄i)(xkj − x̄j)

between variables i and j we define the (sample) covariance matrix

S =


s11 s12 . . . s1p
s21 s22 . . . s2p
...

...
...

sp1 sp2 . . . spp

 .
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Gaussian model

Sample correlation matrix

Given sample correlations

rij =
sij√siisjj

between variables i and j , we define the (sample) correlation matrix

R =


1 r12 . . . r1p

r21 1 . . . r2p
...

...
...

rp1 rp2 . . . 1

 .
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Gaussian model

Estimation of µ and Σ

Let X1,X2, . . . ,Xn be n independent observations of X and let

X̄ =
1
n

n∑
k=1

Xk

Then

E(X̄) =
1
n

n∑
k=1

E(Xk ) = E(Xk )

Estimation of µ
The mean vector X̄ is an unbiased estimator of µ.

Estimation of Σ
It holds that

E(S) = Σ
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Gaussian model

Estimation of Σ−1 given zeros of partial covariances

Estimating Σ−1 is equivalent to estimating the matrix of partial
correlations, let us consider θij as the (i , j)th-term of Σ−1.
The maximizing likelihood under constraint that some of θijs are
zero can not, in general, solved analytically.
Numerical algorithms have to be implemented.

Random graph methods October 16, 2018 27 / 37



Gaussian model

Algorithm – estimating partial correlations given a
graph structure
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Gaussian model

Example
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Gaussian model

Estimating the graph structure – Lasso method

In most cases we do not know which edges to omit from the graph
One would like to try to discover this from the data itself.
The lasso penalty by maximizing the penalized log-likelihood

log detΘ− trace(SΘ)− λ‖Θ‖1
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Gaussian model

Example – the flow-cytometry
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Gaussian model

Algorithm – estimating the graph structure
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Ising model

General comments

Undirected Markov networks with all discrete variables are popular
Pairwise Markov networks with binary variables are the most common – Ising
models
The values at each node can be observed (‘visible’) or unobserved (‘hidden’) –
the so called Boltzman machines assume no interactions between hidden nodes
The nodes are often organized in layers, similar to a neural network.
These models are useful both for unsupervised and supervised learning,
especially for structured input data such as images, but have been hampered by
computational difficulties.
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Ising model

Some details

Denoting the binary valued variable at node j by Xj , the Ising model for
their joint probabilities is given by

p(X ,Θ) = exp

∑
j,k

θjk XjXk − Φ(Θ)


with X ∈ 0,1p.
Only pairwise interactions are modeled.
The Ising model was developed in statistical mechanics, and is now
used more generally to model the joint effects of pairwise interactions.
Φ(Θ) is the log of the partition function, and is defined by

Φ(Θ) = log
∑

x

exp

∑
i,j

θjk xjxk


The partition function ensures that the probabilities add to one over the
sample space.
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Ising model

Example – handwritten digits
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Ising model

Software

Packages in R: Igraph, lars, glasso
Other: Julia, NetLogo
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