Neural Networks J

October 14, 2019

e Neural Networks October 14,2019 1/35

An example of neural network

Neural Networks October 14, 2019

Neuron firing

e Neural Networks October 14,2019 4/35

Stimulating a neuron

Change of voltage during firing Probability of firing by a neuron

Action
potential
+40
d
~ »
o O 5
g Qo
£ S o
g 3 n
=3 g
iled |5 ‘~
Faile ©
Threshold
-55 initiations g
i = o
-70 - T — Resting state =
stimulus Refractory
period °
=)
-10 -5 0 5 10
0 1 2 3 7 5

Time (ms)

e Neural Networks October 14,2019 5/35

Sigmoid function

@ The following function may represent the probability of firing of a neuron given a
stimuli v

v

. 1 e
M= e T Trer
Does this function resembles something we have seen before? Think logistic
regression! More generally
1

os(v) = o(sv) = Tre s

@ The function for s = 1/2 (blue curve) and s = 10 (red curve)

e

1/(1+ ¢
05

0.0

@ \ery large s vields so called hard firing (iump function).
Neural Networks October 14, 2019 6/35

Basic concepts

Neural network

Neural Networks

One layer neural
network

A layer is the middle
unobserved part of the
network.
@ Xj's - stimuli
j=1,....p
@ Z,’s - neurons
m=1,....M
@ Yy’s - responses
k=1,....K

October 14, 2019 8/35

Basic concepts

Neural network for regression and classification

@ Function Z = (&4, ..., 2Zy) of the p-dimensional inputs X:
Zn=oc(aom+alX), m=1,... M

@ The output
Yk:gk(T), k = 1,...,K
where T = (Ty,..., Tk):
Tk:ﬁ0k+ﬁlz-zv k: 17"'7K7
@ Two standard cases of gx:
o the linear case (for regression model)

9k(T) = Tx,

o the multilogit linear model (for classification)
T,
e k

9(T) = el + ...+ ek’

9/85

Basic concepts

Parameters of neural network

@ Hidden units Z, . . ., Zy are not directly observed and their number has
to determined (usually large number is used M = 20, ...,100)

@ The numerical parameters weights have to be learned from the data
{aom,amm=1,2,...,M}-M(p + 1) weights
{Bok, Bx; k =1,2,..., K}-K(M + 1) weights

@ The parameters are determined in a recursive way by minimizing an
appropriate function

@ All the parameters put together are denoted by ¢

e Neural Networks October 14,2019 10/35

Highlights

Hidden units Z;, . . . , Zyy are non-linear functions of linear combinations
of the inputs.

The non-linearity is through o.

The outputs Ty are again linearly transformed

The parameters of the model are learned from the data
Another simple way accounting on non-linearity

The sigmoid function is approximately linear near zero, the model is
equivalent to linear model

With increase of the arguments in o the model becomes non-linear

@ By taking linear combinations of the inputs we go beyond simple additive

models

e Neural Networks October 14,2019 11/35

Basic concepts

Criteria of optimality

@ We use standard citeria of optimality
@ The Sum of Squares, for regression

K N
(0)=> > vk — ak(T(o(x))))?
k=1 i=1
e The prediction of (yi,...,yk) is
(91(T(a(x))), - - - gk(T(a(x))).

o Cross-entropy (deviance) for classification

nyk/og (Gk(T(a(x)))) X € RP.

o The classiffier is ‘winner-takes-all’
G(x) = argmax, gk (T (o(x)))
e Neural Networks October 14,2019 12/35

Basic concepts

Back-propagation

@ The problem with finding the minimum is that the function is not convex
(concave).

@ The back-propagation method of fitting the model is based on the
gradient descent method.

@ It updates parameters in the direction of the gradient by scaling it by a
learning rate.

@ The main value of the neural networks is that the steps in the algorithm
can be fairly easily obtained due to a simple form of the derivatives.

@ Recall the computed derivatives in the logistic regression model.

@ Initial values of the parameters (weights) are typically chosen uniform
over the range [—0.7,0.7]. This applies if that input variables has been
standardized with respect to their mean and standard deviation.

@ We do not discuss the details of the algorithms.

e Neural Networks October 14,2019 13/35

Basic concepts

Overfitting and the weight decay regularization

@ Neural networks tend to overfit the data, so originally, the optimization
was stopped before finding the maximum to avoid the problem.

@ Another more elegant solution is adding to R(¢) a penalty term AJ(6),
where
J(O) = Zﬁim + Z alz(m'
km ml

@)\ > 0is atuning parameter called the weight decay and its larger values
tend to shrink the parameters (weights) toward zero.

@ Cross-validation is used to choose .

e Neural Networks October 14,2019 14/35

Mixture of Gaussian clusters — the benchmark model

@ BLUE class: 10 means my, k = 1,...,10 are generated from a bivariate
Gaussian distribution N((1,0),1) and subsequently 100 observations are
generated independently each time by taking at random one of my’s and
than simulating a value from N(my,1/5).

° has been created in a similar fashion except the initial
means were simulated from N((0, 1),1).

@ These simulated data constitute a training sample of 200 observations

@ For the testing different approaches to the fit 10 000 data from the model
has been simulated.

@ Would you be able to write a program in R to simulate data from
this model?

e Neural Networks October 14,2019 16/35

Linear classifier

Linear Regression of 0/1 Response

Xis 200 x 2 input data matrix and the orthogonal projection y of
the observation O(blue)-1(orange) vector y to the space of
spanned by the columns of the design matrix X. This projection
can be expressed as the matrix P = X(X’X) "X/, so that

Py ///

y
B=xx""Xy

We define define the classification rule xT[B > 0.5.

Would you be able to write a program in R to evaluate this

classifier?
FIGURE 2.1. 4 example in two The classes are coded
as a binary variable (BLUE = 0, = 1), and then fit by linear regression.
The line is the decision boundary defined by a7 3 = 0.5. The orange shaded region
denotes that part of input space classified as . while the blue region is

classified as BLUE.

e Neural Networks October 14,2019 17/35

Nearest neighbors classifiers

Another simple classifier, take k closest neighbors and the dominant class
among them is used as a classifier.

15-Nearest Neighbor Classifier

1-Nearest Neighbor Classifier

e

FIGURE 2.2. The same classification crample in two dimensions as in Fig- FIGURE 2.3. The same classification example in two dimensions as in Fig-
ure 2.1. The classes are coded as a binary variable (BLUE = 0, =1) and ure 2.1. The classes are coded as a binary variable (ELUE = 0, = 1), and
then fit by 15-nearest-neighbor averaging as in (2.8). The predicted class is hence then predicted by 1-nearest-neighbor classification.
chosen by magority vote amongst the 15-nearest

ighbors

October 14, 2019 18/35

Optimal classifier vs. the nearest neighbors

Since we know the model from which the data are simulated, we can derive
the optimal classifier and compare the other classifiers to this one using
generated 10 000 testing data.

Bayes Optimal Classifier Lt L L
8 Lnear
& |
!
N\ g <
97N
\)
_//
b Train
To
Bayes.
2 3 5 8 12 18 29 67 200
Degrees of Freedom — Nk

FIGURE 2.4. Misclassification curves for the simulation evample used in Fig-
FIGURE 2.5 optimal Bayes decision boundary for the simulation ezample 2.3. A single training sample of size 200 was used, and a lest
of Figures 2.1, 2.2 and 2.3. Since the generating density is known for each class, sample of 10,000. The orange curves are lest and the blue are lraining er-
this boundary can be caleulated exactly (Ecercise ror Jor k-nearest-neighbor classification. The resulls [or linear regression are the
bigger orange and blue squares at three degrees of freedom. The purple line is the
optimal Bayes error rate.

e Neural Networks October 14,2019 19/35

Neural networks

Dashed line represents the optimal fit while continuous lines represent the

neural network fit without a weight decay on the left hand side and with a
weight decay on the right one

Neural Network - 10 Units, No Weight Decay Neural Network - 10 Units, Weight Decay=0.02

Training Error: 0.100
TestError: 0.259
Bayes Error: 0.210

Training Error: 0.160
Test Error: 0.223
Bayes Error: 0.210

e Neural Networks October 14,2019 20/35

Further details

Generalizations — more layers

@ ltis better to have too many hidden units than too few: With too few
hidden units, the model might not have enough flexibility to capture the
nonlinearities in the data; with too many hidden units, the extra weights
can be shrunk toward zero if appropriate regularization is used.

@ Typically the number of hidden units is somewhere in the range of 5 to
100, with the number increasing with the number of inputs.

@ Choice of the number of hidden layers is guided by background
knowledge and experimentation.

@ Use of multiple hidden layers allows construction of hierarchical features
at different levels of resolution.

e Neural Networks October 14,2019 22/35

Further details

More complex architecture

X1 > V(%) 6x16
Net-1 Net2 et
X, €\ ’ ®) Local ceonnecuwy
X,
Inputs ; X : ‘—’ Yz Outputs E—_) .

BINGIaE

Output
Second |ayer

First ~ layer

e Neural Networks October 14,2019 23/35

Further details

Real life example — digit recognition

@ The complex neural networks were put to work to recognize digits.
@ There was 320 digits in the training set and 160 in the test data.

@ There are 16 x 16 = 256 inputs (pixels to which digits are coded).
@ There 10 outputs (classification to one of the ten digits).

@ Fit was made with the sum-of-squares error function.

@ The predicted value gx(T(o(x)) represents the estimated
probability that an image has digit class k, k =0,1,2,...,9.

@ Weights close to zero mean that there is no link between a
corresponding input and the hidden unit.

e Neural Networks October 14,2019 24/35

Further details

Performance

le}

\HF“\B\‘*\S
224 s
M3
I A
1337

[5N0

fb

7 @ @ 0
[0
NS
~IN S

2
<
>

W
IEI

00/ [[
rof[~a ||

7189
78 9

FIGURE 11.9. Examples of lraining cases from ZIP code data. Each image is

16 X 16 8-bil grayscale representation of a handwritlen digit

TABLE 11.1. Test set performance of five different neural networks on a hand-
written digit classification example (Le Cun, 1989).

Network Architecture Links | Weights | % Correct
Net-1: Single layer network 2570 2570 80.0%
Net-2: Two layer network 3214 3214 87.0%
Net-3: Locally connected 1226 1226 88.5%
Net-4: Constrained network 1 2266 1132 94.0%
Net-5: Constrained network 2 | 5194 1060 98.4%

Neural Networks

October 14, 2019

25/35

Programming in

Neuralnet R-package

Boston data and predicting the square root of a number

083443

Dpiratio

black

Istat

Error: 0.001006 Steps: 5096

e Neural Networks October 14,2019 27/35

Programming in

Neuralnet —two examples

Predictina the sauare root of a number
Boston data

Error: 0.001006 Steps: 5096

Blue lines with numbers represent additional shift (bias, intercept) in the linear
components, which were denoted as aom’s and Box’s.

28/35

Programming in Neuralne

Learning about square root

The neural network is going to take a single input (the number that you want square rooting) and
produce a single output (the square root of the input). The middle contains 10 hidden neurons
which are first trained to obtain weights.

Input Expected Output Neural Net Output

Input Expected Output Neural Net Output

1 1 0.9623402772
4 2 2.0083461217
9 3 2.9958221776
16 4 4.0009548085
25 5 5.0028838579
36 6 5.9975810435
49 7 6.9968278722
64 8 8.0070028670
81 9 9.0019220736
100 10 9.9222007864

e Neural Networks October 14,2019 29/35

Programming in Neu

The code — the training phase

install.packages (' neuralnet’)
library ("neuralnet")

#Going to create a neural network to perform sgare rooting
#Type ?neuralnet for more information on the neuralnet library

#Generate 50 random numbers uniformly distributed between 0 and 100
#And store them as a dataframe

traininginput <- as.data.frame (runif (50, min=0, max=100))
trainingoutput <- sqgrt (traininginput)

#Column bind the data into one variable
trainingdata <- cbind(traininginput,trainingoutput)
colnames (trainingdata) <- c("Input","Output")

#Train the neural network

#Going to have 10 hidden layers

#Threshold is a numeric value specifying the threshold for the partial
#derivatives of the error function as stopping criteria.

net.sgrt <- neuralnet (Output Input,trainingdata, hidden=10, threshold=0.01)
print (net.sqrt)

#Plot the neural network
plot (net.sqgrt)

e Neural Networks October 14,2019 30/35

Programming in Neu

The code for the testing phase

#Test the neural network on some testing data
testdata <- as.data.frame((1:10)"2) #Generate some squared numbers
net.results <- compute (net.sqrt, testdata) #Run them through the neural network

#Lets see what properties net.sqrt has
ls(net.results)

#Lets see the results
print (net.results$net.result)

#Lets display a better version of the results
cleanoutput <- cbind(testdata, sqgrt (testdata),
as.data.frame (net.resultsSnet.result))
colnames (cleanoutput) <- c("Input","Expected Output"”,"Neural Net Output")
print (cleanoutput)

e Neural Networks October 14,2019 31/35

Programming in Neuralnet

Understanding neural network output
What is the relation between

the neural network: the output code:
o FunCtiOn Z = (Z1 geeey ZM) Of the net.sqrt <- neuralnet (Output ™ Input,trainingdata,
p-dimensional inputs X: plot(net.sqrt)

sgrt5=compute (net.sqgrt, as.data.frame(5))

Zm:a(ozo,n—ka;,X), m=1,...,M sarts

Sneurons
$neurons|[[1]]
5

[1,1 15

@ Theoutput T = (T,..., Tk):
Tk:ﬁ0k+ﬂlz—z7 k:17"'7K7

#

#

#

#

#

Sneurons[[2]]

[,1] [,2] [,3]
[1,] 1 0.1252886 0.4861516
#
#
#
#
#

$net.result
[,1]
[1,] 2.310066

and the actual mathematical relation
y="1Ff(x) ?
e Neural Networks October 14,2019 32/35

Programming in Neuralnet

Specifying the network

@ Let us consider only one layer with two neurons for /x problem.

o Identify the dimensions and the form of the mathematical form of the neural network:

Z = (Z,...,2y) of the p-dimensional inputs X:
Zn = o(agm + abX), m=1,..., M
Theoutput T = (Tq, ..., Tk):
Ta = Bok + BRZ, k=1,...,K,

Qv =7, K =7 and thus with the sigmoid activation function

B1 B2

1+ e~ (@p1+eqx) * 1 + e (ap2tapX)

Yy = Bot +

The algorithm searches for the best B, B1, g1, g2, a1, ap for the above function to resemble /x.

33/35

Programming in N

Playing with the code

net.sqgrt <- neuralnet (Output ™ Input,trainingdata, hidden=2, threshold=0.01)
plot (net.sqrt)

sgrt5=compute (net.sqrt, as.data.frame (5))
sgrt5

$neurons
Sneurons([[1]]

#5

#[1,] 15

#

S$neurons[[2]]

[,1] [,2] [,3]
[1,] 1 0.1252886 0.4861516
#

#

Snet.result

[,1]

[1,] 2.310066

net.sqgrt$act.fct

Error: 0.023726 Steps: 13110

net.sqgrt$act.fct (1)

e Neural Networks October 14,2019 34/35

Programming in

Connecting the dots

Thus Bg; = — 1.12, 81 = 7.03, B = 5.24, agy = — 2.12,

apz = — 0.52, oy = 0.036, arp = 0.094 50 that

net.sqgrt$weight

[[111 112 7.03 5.24

SRR . .. Y= et e e 0.0sex T {4 ¢0.52-0.094x

[1,] -2.1260205 —0.52906884

[2,] 0.0365492 0.09473225 We can check this

tnrezn -1.1247.03/ (1+exp(2.12-0.036xtests))+

(1] 5.24/ (1+exp(0.52-0.094+tests))
(1,1 -1.121525 [1] 1.728181 1.872241 2.018863 2.167559 2.317818
12,1 7.035129

(3] 5.245626 2.469115 2.620920 2.772705 2.923959

nntests=compute (net.sqgrt, as.data.frame (tests))

sqrt5$neurons[[2]]%x%net.sqrt$weights[[1]]1[[2]] t (nntests$net.result)

[,1] [,1] [,2] [,3] [,4] [,5]
(1,1 2.310066 [1,] 1.715224 1.860459 2.008346 2.158389 2.310066
t(net.sgrt$weights[[11][[1]])%x%c(1,5) 2.46284 2.616168 2.76951 2.92234

[,1]

[1,] -1.9432745
[2,] -0.0554076
net.sgrt$act.fct (t (net.sgrtSweights[[1]]1[[1]])%*%
c(1,5))

[,1]

[1,] 0.1252886
[2,] 0.4861516

e Neural Networks October 14,2019 35/35

	Intro
	Basic concepts
	Example
	Further details
	Programming in Neuralnet

