
Neural Networks

October 14, 2019

Neural Networks October 14, 2019 1 / 35

Intro

An example of neural network

Neural Networks October 14, 2019 3 / 35

Intro

Neuron firing

Neural Networks October 14, 2019 4 / 35

Intro

Stimulating a neuron

Change of voltage during firing Probability of firing by a neuron

Neural Networks October 14, 2019 5 / 35

Intro

Sigmoid function

The following function may represent the probability of firing of a neuron given a
stimuli v

σ(v) =
1

1 + e−v =
ev

1 + ev .

Does this function resembles something we have seen before? Think logistic
regression! More generally

σs(v) = σ(sv) =
1

1 + e−sv .

The function for s = 1/2 (blue curve) and s = 10 (red curve)

Very large s yields so called hard firing (jump function).
Neural Networks October 14, 2019 6 / 35

Basic concepts

Neural network

One layer neural
network

A layer is the middle
unobserved part of the
network.

Xj ’s - stimuli
j = 1, . . . ,p
Zm’s - neurons
m = 1, . . . ,M
Yk ’s - responses
k = 1, . . . ,K

Neural Networks October 14, 2019 8 / 35

Basic concepts

Neural network for regression and classification

Function Z = (Z1, . . . ,ZM) of the p-dimensional inputs X :

Zm = σ(α0m + αT
mX), m = 1, . . . ,M

The output
Yk = gk (T), k = 1, . . . ,K

where T = (T1, . . . ,TK):

Tk = β0k + βT
k Z , k = 1, . . . ,K ,

Two standard cases of gk :
the linear case (for regression model)

gk (T) = Tk ,

the multilogit linear model (for classification)

gk (T) =
eTk

eT1 + · · ·+ eTK
,

Neural Networks October 14, 2019 9 / 35

Basic concepts

Parameters of neural network

Hidden units Z1, . . . ,ZM are not directly observed and their number has
to determined (usually large number is used M = 20, . . . ,100)

The numerical parameters weights have to be learned from the data

{α0m, αm;m = 1,2, . . . ,M}–M(p + 1) weights

{β0k , βk ; k = 1,2, . . . ,K}–K (M + 1) weights

The parameters are determined in a recursive way by minimizing an
appropriate function

All the parameters put together are denoted by θ

Neural Networks October 14, 2019 10 / 35

Basic concepts

Highlights

Hidden units Z1, . . . ,ZM are non-linear functions of linear combinations
of the inputs.

The non-linearity is through σ.

The outputs Tk are again linearly transformed

The parameters of the model are learned from the data

Another simple way accounting on non-linearity

The sigmoid function is approximately linear near zero, the model is
equivalent to linear model

With increase of the arguments in σ the model becomes non-linear

By taking linear combinations of the inputs we go beyond simple additive
models

Neural Networks October 14, 2019 11 / 35

Basic concepts

Criteria of optimality

We use standard citeria of optimality
The Sum of Squares, for regression

R(θ) =
K∑

k=1

N∑
i=1

(yik − gk (T (σ(xi))))
2

The prediction of (y1, . . . , yK) is

(g1(T (σ(x))), . . . ,gK (T (σ(x))).

Cross-entropy (deviance) for classification

R(θ) = −
K∑

k=1

N∑
i=1

yik log (gk (T (σ(xi)))) , xi ∈ Rp.

The classiffier is ‘winner-takes-all’

G(x) = argmaxk gk (T (σ(x)))

Neural Networks October 14, 2019 12 / 35

Basic concepts

Back-propagation

The problem with finding the minimum is that the function is not convex
(concave).

The back-propagation method of fitting the model is based on the
gradient descent method.

It updates parameters in the direction of the gradient by scaling it by a
learning rate.

The main value of the neural networks is that the steps in the algorithm
can be fairly easily obtained due to a simple form of the derivatives.

Recall the computed derivatives in the logistic regression model.

Initial values of the parameters (weights) are typically chosen uniform
over the range [−0.7,0.7]. This applies if that input variables has been
standardized with respect to their mean and standard deviation.

We do not discuss the details of the algorithms.

Neural Networks October 14, 2019 13 / 35

Basic concepts

Overfitting and the weight decay regularization

Neural networks tend to overfit the data, so originally, the optimization
was stopped before finding the maximum to avoid the problem.

Another more elegant solution is adding to R(θ) a penalty term λJ(θ),
where

J(θ) =
∑
km

β2
km +

∑
ml

α2
km.

λ ≥ 0 is a tuning parameter called the weight decay and its larger values
tend to shrink the parameters (weights) toward zero.

Cross-validation is used to choose λ.

Neural Networks October 14, 2019 14 / 35

Example

Mixture of Gaussian clusters – the benchmark model

BLUE class: 10 means mk , k = 1, . . . ,10 are generated from a bivariate
Gaussian distribution N((1,0), I) and subsequently 100 observations are
generated independently each time by taking at random one of mk ’s and
than simulating a value from N(mk , I/5).

ORANGE class has been created in a similar fashion except the initial
means were simulated from N((0,1), I).

These simulated data constitute a training sample of 200 observations

For the testing different approaches to the fit 10 000 data from the model
has been simulated.

Would you be able to write a program in R to simulate data from
this model?

Neural Networks October 14, 2019 16 / 35

Example

Linear classifier

X is 200× 2 input data matrix and the orthogonal projection ŷ of
the observation 0(blue)-1(orange) vector y to the space of
spanned by the columns of the design matrix X. This projection
can be expressed as the matrix P = X(X′X)−1X′, so that

ŷ = Py

β̂ = (X′X)−1X′y

We define define the classification rule xT β̂ > 0.5.

Would you be able to write a program in R to evaluate this
classifier?

Neural Networks October 14, 2019 17 / 35

Example

Nearest neighbors classifiers

Another simple classifier, take k closest neighbors and the dominant class
among them is used as a classifier.

Neural Networks October 14, 2019 18 / 35

Example

Optimal classifier vs. the nearest neighbors

Since we know the model from which the data are simulated, we can derive
the optimal classifier and compare the other classifiers to this one using
generated 10 000 testing data.

Neural Networks October 14, 2019 19 / 35

Example

Neural networks
Dashed line represents the optimal fit while continuous lines represent the
neural network fit without a weight decay on the left hand side and with a
weight decay on the right one

Neural Networks October 14, 2019 20 / 35

Further details

Generalizations – more layers

It is better to have too many hidden units than too few: With too few
hidden units, the model might not have enough flexibility to capture the
nonlinearities in the data; with too many hidden units, the extra weights
can be shrunk toward zero if appropriate regularization is used.

Typically the number of hidden units is somewhere in the range of 5 to
100, with the number increasing with the number of inputs.

Choice of the number of hidden layers is guided by background
knowledge and experimentation.

Use of multiple hidden layers allows construction of hierarchical features
at different levels of resolution.

Neural Networks October 14, 2019 22 / 35

Further details

More complex architecture

Neural Networks October 14, 2019 23 / 35

Further details

Real life example – digit recognition

The complex neural networks were put to work to recognize digits.
There was 320 digits in the training set and 160 in the test data.
There are 16× 16 = 256 inputs (pixels to which digits are coded).
There 10 outputs (classification to one of the ten digits).
Fit was made with the sum-of-squares error function.
The predicted value ĝk (T (σ(x)) represents the estimated
probability that an image has digit class k , k = 0,1,2, . . . ,9.
Weights close to zero mean that there is no link between a
corresponding input and the hidden unit.

Neural Networks October 14, 2019 24 / 35

Further details

Performance

Neural Networks October 14, 2019 25 / 35

Programming in Neuralnet

Neuralnet R-package

Boston data and predicting the square root of a number

Neural Networks October 14, 2019 27 / 35

Programming in Neuralnet

Neuralnet – two examples

Boston data

Predicting the square root of a number

Blue lines with numbers represent additional shift (bias, intercept) in the linear
components, which were denoted as α0m ’s and β0k ’s.

Neural Networks October 14, 2019 28 / 35

Programming in Neuralnet

Learning about square root

The neural network is going to take a single input (the number that you want square rooting) and
produce a single output (the square root of the input). The middle contains 10 hidden neurons
which are first trained to obtain weights.

Input Expected Output Neural Net Output

Input Expected Output Neural Net Output
1 1 0.9623402772
4 2 2.0083461217
9 3 2.9958221776
16 4 4.0009548085
25 5 5.0028838579
36 6 5.9975810435
49 7 6.9968278722
64 8 8.0070028670
81 9 9.0019220736
100 10 9.9222007864

Neural Networks October 14, 2019 29 / 35

Programming in Neuralnet

The code – the training phase

install.packages(’neuralnet’)
library("neuralnet")

#Going to create a neural network to perform sqare rooting
#Type ?neuralnet for more information on the neuralnet library

#Generate 50 random numbers uniformly distributed between 0 and 100
#And store them as a dataframe
traininginput <- as.data.frame(runif(50, min=0, max=100))
trainingoutput <- sqrt(traininginput)

#Column bind the data into one variable
trainingdata <- cbind(traininginput,trainingoutput)
colnames(trainingdata) <- c("Input","Output")

#Train the neural network
#Going to have 10 hidden layers
#Threshold is a numeric value specifying the threshold for the partial
#derivatives of the error function as stopping criteria.
net.sqrt <- neuralnet(Output˜Input,trainingdata, hidden=10, threshold=0.01)
print(net.sqrt)

#Plot the neural network
plot(net.sqrt)

Neural Networks October 14, 2019 30 / 35

Programming in Neuralnet

The code for the testing phase

#Test the neural network on some testing data
testdata <- as.data.frame((1:10)ˆ2) #Generate some squared numbers
net.results <- compute(net.sqrt, testdata) #Run them through the neural network

#Lets see what properties net.sqrt has
ls(net.results)

#Lets see the results
print(net.results$net.result)

#Lets display a better version of the results
cleanoutput <- cbind(testdata,sqrt(testdata),

as.data.frame(net.results$net.result))
colnames(cleanoutput) <- c("Input","Expected Output","Neural Net Output")
print(cleanoutput)

Neural Networks October 14, 2019 31 / 35

Programming in Neuralnet

Understanding neural network output
What is the relation between

the neural network:
Function Z = (Z1, . . . ,ZM) of the
p-dimensional inputs X :

Zm = σ(α0m + αT
mX), m = 1, . . . ,M

The output T = (T1, . . . ,TK):

Tk = β0k + βT
k Z , k = 1, . . . ,K ,

the output code:
net.sqrt <- neuralnet(Output˜Input,trainingdata, hidden=2, threshold=0.01)
plot(net.sqrt)

sqrt5=compute(net.sqrt,as.data.frame(5))
sqrt5

$neurons
$neurons[[1]]
5
[1,] 1 5
#
$neurons[[2]]
[,1] [,2] [,3]
[1,] 1 0.1252886 0.4861516
#
#
$net.result
[,1]
[1,] 2.310066

and the actual mathematical relation

y = f (x) ?

Neural Networks October 14, 2019 32 / 35

Programming in Neuralnet

Specifying the network

Let us consider only one layer with two neurons for
√

x problem.

Identify the dimensions and the form of the mathematical form of the neural network:
Z = (Z1, . . . , ZM) of the p-dimensional inputs X :

Zm = σ(α0m + αT
mX), m = 1, . . . ,M

The output T = (T1, . . . , TK):
Tk = β0k + βT

k Z , k = 1, . . . , K ,

M =?, K =? and thus with the sigmoid activation function

y = β01 +
β1

1 + e−(α01+α1x)
+

β2

1 + e−(α02+α2x)

The algorithm searches for the best β0, β1, α01 , α02, α1, α2 for the above function to resemble
√

x .

Neural Networks October 14, 2019 33 / 35

Programming in Neuralnet

Playing with the code

net.sqrt <- neuralnet(Output˜Input,trainingdata, hidden=2, threshold=0.01)
plot(net.sqrt)

sqrt5=compute(net.sqrt,as.data.frame(5))
sqrt5

$neurons
$neurons[[1]]
5
[1,] 1 5
#
$neurons[[2]]
[,1] [,2] [,3]
[1,] 1 0.1252886 0.4861516
#
#
$net.result
[,1]
[1,] 2.310066
net.sqrt$act.fct

net.sqrt$act.fct(1)

Neural Networks October 14, 2019 34 / 35

Programming in Neuralnet

Connecting the dots

net.sqrt$weight
[[1]]
[[1]][[1]]

[,1] [,2]
[1,] -2.1260205 -0.52906884
[2,] 0.0365492 0.09473225

[[1]][[2]]
[,1]

[1,] -1.121525
[2,] 7.035129
[3,] 5.245626

sqrt5$neurons[[2]]%*%net.sqrt$weights[[1]][[2]]
[,1]

[1,] 2.310066
t(net.sqrt$weights[[1]][[1]])%*%c(1,5)

[,1]
[1,] -1.9432745
[2,] -0.0554076

net.sqrt$act.fct(t(net.sqrt$weights[[1]][[1]])%*%
c(1,5))

[,1]
[1,] 0.1252886
[2,] 0.4861516

Thus β01 = − 1.12, β1 = 7.03, β2 = 5.24, α01 = − 2.12,
α02 = − 0.52, α1 = 0.036, α2 = 0.094 so that

y = − 1.12 +
7.03

1 + e2.12−0.036x
+

5.24

1 + e0.52−0.094x

We can check this

-1.12+7.03/(1+exp(2.12-0.036*tests))+
5.24/(1+exp(0.52-0.094*tests))

[1] 1.728181 1.872241 2.018863 2.167559 2.317818
2.469115 2.620920 2.772705 2.923959

nntests=compute(net.sqrt,as.data.frame(tests))
t(nntests$net.result)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
[1,] 1.715224 1.860459 2.008346 2.158389 2.310066
2.46284 2.616168 2.76951 2.92234

Neural Networks October 14, 2019 35 / 35

	Intro
	Basic concepts
	Example
	Further details
	Programming in Neuralnet

