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Intro

General statement of the problem

One has a set of N observations (x1, x2, ..., xN) of a random
p-vector X having joint density f (X ).
The goal is to directly infer some properties of this probability
density without help of a ‘supervisor’ or a ‘teacher’ who would
provide correct answers or assessment of the degree-of-error for
each observation.
The dimension of X can be much higher than in supervised
learning, and the properties of interest are often complicated and
not easily formalized: some structural relations between variables,
the patterns of behaviors, etc.
Often the ‘discovered’ properties constitutes a starting point for
further investigation, possibly, through supervised methods.

Unsupervised learning – introduction October 7, 2019 3 / 39



Intro

Example – genes and microarray data

Suppose that the observations (x1, x2, ..., xN) represents gene activities
of a certain group of population in which certain various pathological
features was observed, say, cancer.

The data on the pathologies are not given but a distant goal is to find
some relation between them and the genes activities.

The goal is to identify some gene patterns and group individuals with
respect to these patterns – this would be a non-supervised learning
problem.

Then by succeeding in the above and thus having the population
classified by these patterns, one can further search if these patterns are
responsible for some pathologies.

For example, if the certain groups are more inclined to get certain
cancer, this could be achieved by designing a supervised learning
problem, classification problem.
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Intro

Learning without a teacher

With supervised learning, due to availability of values of Y in
training and testing, there is a clear measure of success, or lack
thereof, that can be used to judge adequacy in particular
situations and to compare the effectiveness of different methods
over various situations. Methods can be validated, for example,
through cross-validation.
In the context of unsupervised learning, there is no such direct
measure of success.
It is difficult to ascertain the validity of inferences drawn from
the output of most unsupervised learning algorithms.
Heuristic arguments for judgments as to the quality of the results.
Effectiveness often is a matter of opinion and cannot be verified
directly.
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Cluster Analysis

Basic idea of clustering

The idea behind cluster analysis (data segmentation) is simple:

Identify groupings or clusters of individuals that are not readily apparent to the researcher.

Important aspect of it is using multiple variables, which are more difficult to analyze by
visual inspection – similarities can be “hidden” in high dimensions.
The figure below gives a simplistic example of three clusters (two clusters and one data
segmentation) defined by two variables.

Central to cluster analysis is the notion of
the degree of similarity (or dissimilarity)
between the individual objects being
clustered.

A clustering method attempts to group the
objects based on the definition of
similarity.
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Cluster Analysis

What kind of clusters?

The problem with cluster analysis is that in all but the simplest of
cases uniquely defined clusters may not exist.
Cluster analysis may classify the same observations into
completely different groupings depending on the choice of a
method.
Cluster analysis tends to be good at finding spherical clusters and
has great difficulty with curved clusters.
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Cluster Analysis

Similarity and distance

Clustering means grouping observations into subgroups in such a way
that observations within subgroups are “similar”.
For example

group languages into families using characteristics of the
languages
divide animals and plants into different species and families using
a variety of characteristics

Clustering algorithms typically consist of the followings steps:

1 Determine “distances” or similarities between all pairs of objects.
These distances or similarities define a symmetric matrix:

dissimilarity matrix.
2 Run an algorithm that takes this matrix as the input.
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Distances

Measuring similarities

Two objects (i and j) having multivariate values xi and xj are
assigned a measure of dissimilarity dij with the following
properties:

dij ≥ 0

dii = 0

dij = dji

Some measures of dissimilarity are also distances (satisfying the
triangular inequality).
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Distances

Metric variables

Common distance measures:

‘Cityblock’ dij =

p∑
k=1

|xik − xjk |

Euclidian distance dij =

√√√√ p∑
k=1

|xik − xjk |2

or more generally

Minkowski distance dij = r

√√√√ p∑
k=1

|xik − xjk |r
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Distances

Other measures

Clustering can be based on the variable ‘correlation’ between two
observations

ρik =

∑p
j=1(xij − x̄i·)(xik − x̄k·)√∑p

j=1(xij − x̄i·)2
∑p

j=1(xkj − x̄k·)2

Note that the correlation is averaged over variables in an observation x not
over observations – high correlation (close to one) means that variables

between two observation depend nearly linearly one on another.
Ordinal variables: code them to (i − 1/2)/M, i = 1, . . . ,M, where M is
the number of ordinal variables.
Categorical variables: Take zero-one distance, i.e.

if a variable has the same value for two observations the distance is
‘zero’, otherwise is ‘one’
count number of ‘ones’ as the distance: a lot of non-zeros the
observations are distant
other integers can be used to emphasize different kinds of
dissimilarities
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Hierarchical clusters

Hierarchical cluster methods

This kind of clustering starts with the calculation of the ‘distances’ of each
individual to all other individuals in the dataset.

Groups are formed by the process of agglomeration or division.

Agglomeration
Start with the most refined grouping, i.e. each individual constitute a separate group
– singeltons.
Then through certain agglomeration algorithms we arrive to a smaller number of
larger groups made of many ‘similar’ members.
Eventually we end up with the single most crude group of all individuals.

Division
Not so popular as agglomeration, it starts with one the most crude grouping made of
all individuals
By process division of larger groups into smaller ones we arrive through certain
algorithms to larger number of smaller groups made of only the most similar
members.
Eventually we end up with singletons
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Hierarchical clusters

Agglomeration algorithm – general scheme

We want to cluster n objects.
1 Initiate the process with n clusters; one for each individual or

object.
2 Two groups A and B that based on their distance or dissimilarity

dAB are closest to each other among all cluster pairs at a given
stage of the algorithm are merged with one another.

3 Calculate dissimilarities between the new group and all other
clusters.

4 Repeat Steps 2 and 3 until finally all individuals are in one single
group.

The sequence of grouping operations can be illustrated as a tree
diagram aka dendrogram that is then used to identify clusters.
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Hierarchical clusters

Division procedure

This is ‘agglomeration in reverse’:
1 All n objects start in a single group (number of groups=1).
2 This is then split into two groups using one of a number of rules for

choosing the best split of one group into two groups.
3 Each of the two groups are in turn split, and so on until all

individuals are in groups of their own.
The sequence of grouping operations can be inspect visually or by
some numerical analysis of the tree diagram dendrogram –
identification of the groups is made in the same manner as in
agglomeration technique.

Why is it harder to divide, than to agglomerate?
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Hierarchical clusters

Defining distances between clusters

Suppose at a certain step of algorithm the two groups A and B
were agglomerate to one group (AB).
For any other cluster C the distances between A and C: dAC and
B and C: dBC were given
To define the algorithm one has to define how the distance from
(AB) to any other cluster C: d(AB)C will be measured, i.e. the
relation between d(AB)C and the pair (dAC ,dBC) has to be given.
Occasionally, dAB is also used to define d(AB)C .
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Hierarchical clusters

Dissimilarities between clusters

Single linkage: Nearest neighbor clustering computes the
similarity between two groups as the similarity of the closest pair
of observations between the two groups.

d(AB)C = min(dAC ,dBC)

Complete linkage: Farthest neighbor clustering uses the
farthest pair of observations between two groups to determine the
similarity of the two groups.

d(AB)C = max(dAC ,dBC)
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Hierarchical clusters

Another linkage method

Average linkage clustering uses the average similarity of observations
between two groups as the measure between the two groups.

d(AB)C =
|A|dAC + |B|dBC

|A|+ |B|

where |A| denotes the number of elements in A.
McQuittys method

d(AB)C = (dAC + dBC)/2
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Hierarchical clusters

Some other averaging methods

Gowers method

d(AB)C = 0.5dAC + 0.5dBC − 0.25dAB

The term −0.25dAB ‘encourages’ merging distant clusters through
clusters that ‘lie’ between them.
Centroid method

d(AB)C =
|A|dAC + |B|dBC

|A|+ |B|
+
|A| · |B|

(|A|+ |B|)2 dAB

The term |A|·|B|
(|A|+|B|)2 dAB penalize for merging too large too distant

clusters because if both A and B are large than |A| · |B| are on the
same magnitude as (|A|+ |B|)2 but if one is evidently smaller than
(|A|+ |B|)2 is much bigger than |A| · |B|.
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Hierarchical clusters

Method based on Sum of Squares

Ward’s method is distinct from all the other methods because it uses an
analysis of variance approach to evaluate the distances between clusters.

In short, this method attempts to minimize the Sum of Squares (SS) of any two
(hypothetical) clusters that can be formed at each step.

Let ESSA be the sum of squares for a cluster A∑
x∈A

(x− x̄A)′(x− x̄A)

Combine two clusters A and B together, then the new sum of squares satisfies

ESS(AB) = ESSA + ESSB + |A|(x̄A − x̄AB)2 + |B|(x̄B − x̄AB)2

Put these cluster together that minimize the increase of the sum of squares

ESS(AB) − ESSA − ESSB = |A|(x̄A − x̄AB)2 + |B|(x̄B − x̄AB)2
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Partition methods

Partition methods

The partition methods do not require to go through all levels of
grouping (i.e. from the singletons to the single group made of all
members).
Partition methods break the observation into distinct
nonoverlapping groups.
There are many different partition methods, we briefly discuss two
of them.
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Partition methods

k -means clustering – “MacQueens metod”

The k -means clustering is particularly appropriate when the
number of clusters or the approximate number of clusters is
known apriori.
Unlike hierarchical cluster analysis, the k -means clustering can
not produce all possible clusters of n observations.
The k -means cluster analysis programs begin by creating the k
clusters according to some arbitrary procedure.
The program calculates the means or centroids of each of the
clusters.
If one of the observations is closer to the centroid of another
cluster then the observation is made a member of that cluster.
This process is repeated until none of the observations is
reassigned to a different cluster.
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Partition methods

Algorithm

x̄S = argmin
m

∑
i∈S

‖xi −m‖2 (14.32)

K∑
k=1

Nk
∑

C(i)=k

‖xi −mk‖2 (14.33)
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Partition methods

Comments

In the measurement of the closeness to group-center, the
Euclidean distance is often used.
The process of partioning is sensitive to the starting point and can
result in different clusters for different starting grouping.
The choice of k is not obvious.
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Partition methods

k -medians clustering

K -medians clustering is a variation on the k -means method.
The same process is followed except that medians are used
instead of means.
K -medians would be appropriate when you need a more stable
measure of the group centers.
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Final determination of clusters

The choice of clusters problem

In both the approaches to clustering: hierarchical and partition
methods, there is a problem of determining the final form and the
number of the clusters.
In the hierarchical clustering, we have available the tree that
illustrates how the clusters form but we do not know at which level
we should cut the tree to form the final clusters.
In the partition method, we start with the initial number of cluster
but we need to identify this number to be optimal.
A criterion that could help to decide the optimality of the cluster
selection is needed.
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Final determination of clusters

Dissimilarity measures

One common approach is to use a some kind of dissimilarity
measure that quantify dissimilarity for any clustering.
In a one cluster everything is the same and there is no
dissimilarity.
If there are more than just one cluster, then the dissimilarity of
them should be measured how far they are from each other.
The measure should decrease if we go from a higher number of
clusters to a smaller one.
Any reduction of the number of clusters that results in a huge drop
of the dissimilarity measure should be considered undesirable (we
put together very dissimilar objects).
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Final determination of clusters

The Gap statistics

One can compare the reduction of the dissimilarity reductions against a
completely randomly distributed observations (no clusters)

Then to choose the clustering for which the drop of the dissimilarity
encompassed by the reduction of the number of clusters is the largest as
compared to the completely random distribution of the x-variables. (If the drop
large it means that we are joining groups that are distant.)

This applies both to the hierarchical clustering and the choice of the number of
the clusters in the partition method.

The method has been proven quite effective and utilized in a formal testing
problem through the Gap statistic that calibrates drop of the dissimilarity against
totally random distribution of the points.

Instead, for the hierarchical model one can utilize the graphs that result from the
clustering and use them to decide for the clear cut between the clusters.

The height of branches (from the top) often represent how dissimilar the clusters
are by adding distances between clusters at a given step of the algorithm.
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Final determination of clusters

Choosing k in the partition method

Perform the procedure for different k .
One possibility is to choose k such that the between cluster
variability relative the within cluster variability is maximized.
With

B =
∑

i

(x̄i· − x̄··)(x̄i· − x̄··)′

and
W =

∑
i

∑
j

(xij − x̄i·)(xij − x̄i·)
′

we want to maximize |B|/|B + W| or tr(BW−1) (possibly with some
penalty on large number of clusters).
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Examples

Human tumor data

The data are a 6830× 64 matrix of real numbers, each representing an
expression measurement for a gene (row) and sample (column).

Here we cluster the samples, each of which is a vector of length 6830,
corresponding to expression values for the 6830 genes.

Each sample has a label such as breast (for breast cancer), melanoma, and so
on; we don’t use these labels in the clustering, but will examine posthoc which
labels fall into which clusters.
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Examples

Clustering trees – dendrogram

Dendrogram resulting from average linkage agglomerative clustering of the samples
(columns) of the microarray data.

Hierarchical clustering is successful at clustering simple cancers together.

By cutting off the dendrogram at various heights, different numbers of clusters emerge,
and the sets of clusters are nested within one another.
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Examples

Ordering in hierarchical clustering

Genes (rows) and samples (columns) of the
expression matrix are arranged in orderings derived
from hierarchical clustering

To produce the row ordering: at each merge, the
subtree with the tighter cluster is placed to the left
(toward the bottom in the rotated dendrogram in the
figure.)

Individual genes are the tightest clusters possible,
and merges involving two individual genes place
them in order by their observation number.

The same rule was used for the columns.

By grouping genes we obtain genes with more
similar roles (activities) across all samples at the
bottom.
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Examples

Other clustering methods

The left panel shows the dendrogram resulting from average linkage agglomerative
clustering of the samples (columns) of the microarray data.

The middle and right panels show the result using complete and single linkage. Average
and complete linkage gave similar results, while single linkage produced unbalanced
groups with long thin clusters.
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Examples

K -means clustering

We applied K -means clustering with K running from 1 to 10

The total within-sum of squares for each clustering is shown in the figure.

No kink in the sum of squares curve to locate the optimal number of clusters

for illustration we chose K = 3 giving the three clusters shown in the table

Method is grouping together samples of the same cancer.

K -means clustering has shortcomings

it does not give a linear ordering of objects within a cluster;

as the number of clusters K is changed, the cluster memberships can change in arbitrary
ways: the clusters need not be nested within the three clusters above.

Hierarchical clustering is preferable
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