
Random Forests

September 29, 2019

Random Forests September 29, 2019 1 / 30



Motto

The clearest way into the Universe is through a forest wilder-
ness.
John Muir, environmentalist
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Bagged bootstrap

Boostrap – a revisit

The bootstrap is, in general, ‘creating’ new (pseudo) data sets
from the existing ones.
In its original set-up, it is used when it is hard or even impossible
to directly compute the standard deviation of an estimate of the
quantity of interest.
It was not intended to improve the estimate of a quantity of
interest.
Let us recall ‘estimates’ of θ based on bootstrap samples

θ̂∗1, . . . , θ̂
∗
B

The variability of these estimates as measured by a standard
deviation allows to assess the variability of the original estimate θ̂.
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Bagged bootstrap

Can boostrapp improve estimation?

Bootstrapping was not intended to improve the estimate of a
quantity of interest but one could think that averaging results from
the bootstrap sample may reduce variability of the estimate and
thus improve estimation.
For example, one could think that the following estimate could be
an improvement due to averaging

θ̂bag =
θ̂∗1 + · · ·+ θ̂∗B

B

However, for linear estimation methods, such an estimate will be
essentially the same as the one that we started before
bootstrapping, i.e.

θ̂bag ≈ θ̂
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Bagged bootstrap

Example – bootstrapping means

Let us consider θ̂ = x̄ as an estimator of the unknown mean µ.

Consider B bootstrap samples and corresponding means x̄∗
1 , . . . , x̄

∗
B .

Then ‘bagged’ estimator is

x̄bag =
x̄∗

1 + · · ·+ x̄∗
B

B
=

∑n
i=1 x∗

1,i
n + · · ·+

∑n
i=1 x∗

B,i
n

B
=

∑n
i=1

x∗
1,i+···+x∗

B,i
B

n

If B is getting large, then each of x∗
1,i+···+x∗

B,i
B is converging to x̄ and thus

the bagged estimator is approximately equal to x̄ – the original
estimator, and thus no improvement.
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Bagging

Bagging – boostrapp for highly variable estimates

If the estimate is non-linear and with high variance, the averaging
bootstrap estimates may have sense.
For example, the decision trees suffer from high variance.
One can take B bootstrap samples from (x1, y1), . . . , (xN , yN) and
corresponding bootstrap binary tree predictions f̂ ∗i , i = 1, . . . ,B.
Each bootstrap tree will typically involve different features than the
original, and might have a different number of terminal nodes.
One can consider bootstrap averages of f̂ ∗i from trees predictions
at input vector x . The bagged estimate is this average prediction
at x from these B trees

f̂bag(x) =
f̂ ∗1 (x) + · · ·+ f̂ ∗B(x)

B
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Bagging

Bagging for a classification tree

Tree produces a classifier Ĝ(x).
If Ĝ∗i (x)’s are bootstrap classifiers, then the bagged classifier
Ĝbag(x) selects the class with the most votes from among
Ĝ∗i (x)’s – Consensus
If the classifier method produces also estimates of classification
probabilities p̂1(x) and p̂2(x) = 1− p̂1(x), then the bagged
probabilities are obtained as

p̂1,bag(x) =
p̂∗1,1(x) + · · ·+ p̂∗1,B(x)

B

Having the bagged probabilities can also determine an alternative
bagged classifier. Namely, the class is chosen that has the
highest bagged probability.
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Bagging

Example

A sample of size N = 30, with two classes and five features, each
having a standard Gaussian distribution with pairwise correlation
0.95.
The response Y was generated according to

P(Y = 1|x1 ≤ 0.5) = 0.2,
P(Y = 1|x1 > 0.5) = 0.8.

What would be the best classifier if you would know how the
data were simulated?
A test sample of size 2000 was also generated from the same
population.
Fit classification trees to the training sample and to each of 200
bootstrap samples. No pruning was used.
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Bagging

Results

The optimal classifier would have the error rate:

P(Y = 1, X1 < 0.5) + P(Y = 0, X1 ≥ 0.5) =

P(Y = 1|X1 < 0.5)P(X1 < 0.5)+P(Y = 0|X1 ≥ 0.5)P(X1 ≥ 0.5) = 0.2
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Bagging

Not always bagging is good enough

The 100 data points – two features and two classes, separated by the gray linear boundary
x1 + x2 = 1. Classifier Ĝ(x) a single axis-oriented split, choosing the split along either x1 or x2
that produces the largest decrease in training misclassification error.

The decision boundary obtained from bagging the 0-1 decision rule over B = 50 bootstrap
samples is shown by the blue curve in the left panel. It does a poor job of capturing the true
boundary.
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Random forests

Why bagging sometimes is not working?

Each tree generated in bagging is identically distributed (id), the
expectation of an average of B such trees is the same as the expectation
of any one of them

E(f̂bag(x)) =
E(f̂ ∗1 (x)) + · · ·+ E(f̂ ∗B (x))

B
= E(f̂ ∗1 (x))

This means the bias of bagged trees with respect to the optimal predictor

bias = E(f̂bag(x))−G(x)

is the same as that of the individual trees.

The only hope of improvement is through variance reduction. This is in
contrast to boosting, where the trees are grown in an adaptive way to
remove bias, and hence are not id.
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Random forests

Variance reduction

It is well known in statistics that the estimation mean square error is
made of the two components: the squared bias and the variance of the
estimate

MSE = bias2 + variance

An average of B iid random variables has variance σ2/B.

If the variables are simply i.d. (identically distributed, but not necessarily
independent) with positive pairwise correlation , the variance of the
average is

σ2(ρ+ (1− ρ2)/B)

As B increases, the second term disappears, but the first remains, and
hence the size of the correlation of pairs of bagged trees limits the
benefits of averaging.
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Random forests

Example

Let X1, . . . ,XN be identically distributed normal variables with mean µ and
variance σ2 jointly pairwise correlated with the correlation ρ.

Consider the sample mean X̄ . What is the mean and variance of X̄?

EX̄ = µ, VarX̄ = σ2(ρ+ (1 − ρ2)/n)

The idea of bootstrap worked if the original sample is independent identically
distributed. However if they are not, the boostrap will reproduce correlation
between pairs of the data.

If each of Xi = (Xi1, . . . ,Xip) is vector valued and not strongly correlated, then by
randomly sampling only some coordinates of X one can reduce correlation
between bootstrap samples (specially when the coordinates of Xi are not highly
correlated) and thus reducing the variance of the estimate.

This idea is explored in random forests.
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Random forests

Random Forest Algorithm

Here are details of the algorithm
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Random forests

Spam data – comparison

There is a randomForest package
in R, maintained by Andy Liaw.

Random forests do remarkably well,
with very little tuning required.

A random forest classifier achieves
4.88% misclassification error on the
spam test data, which compares well
with all other methods, and is not
significantly worse than gradient
boosting at 4.5%. Bagging achieves
5.4% which is significantly worse
than either, although still comparable
to the additive logistic regression that
was clocked at the rate 5.3%.

In this example the additional
randomization helps.
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Random forests – details

Practical aspects

When used for classification, a random forest obtains a class vote
from each tree, and then classifies using majority vote or by
averaging probabilities and choosing the class that maximize it.
When used for regression, the predictions from each tree at a
target point x are simply averaged,
For m the following recommendations were suggested:

For classification, the default value for m is
√

p and the minimum
node size is one.
For regression, the default value for m is p/3 and the minimum
node size is five.

In practice the best values for these parameters will depend on the
problem.
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Random forests – details

Out of bag (OOB) samples – simultaneous cross-validation

For each observation xi , construct its random forest predictor by averaging only those trees
that are based on bootstrap samples in which xi did not appear. For those trees xi
presents itself as ‘fresh’ observation not used in the predictor.
Evaluate how many xi ’s have been misclassified through the so obtained predictors. This
will be the oob misclassification error.
An oob error estimate is close to that obtained by N -fold cross- validation.
Hence unlike many other nonlinear estimators, random forests can be fit in one sequence,
with cross-validation being performed along the way.
Once the oob error stabilizes, the training can be terminated.
Figure compares the oob misclassification error for the spam data to the test error.
Although 2500 trees are averaged here, it appears from the plot that about 1000 would be
sufficient.
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Random forests – details

Feature importance

On the left hand side and the right hand side graphs, the importance for boosting tree and
the random forest is reported, respectively.
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Visualization - multivariate proximity

Proximity plots – a visualization technique

In growing a random forest, an NN proximity matrix is accumulated for the training data.

For every tree, any pair of oob observations sharing a terminal node has their proximity
increased by one.

This proximity matrix is then represented in two dimensions using multidimen- sional
scaling.

The proximity plot gives an indication of which observations are effectively close together
in the eyes of the random forest classifier.
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Visualization - multivariate proximity

Multidimensional Scaling

A method of representing distances between objects in low dimension

Let dij , i, j = 1, . . . ,N be a matrix of distances between objects

We would like to represent these objects by points xi , i = 1, . . . ,N in some small
dimension k in a way that the Euclidean distances between these points ‖xi − xj‖
approximate dij .

We search points xi ’s so that the two matrices

D =
[
dij
]
, R =

[
‖xi − xj‖

]
are in a certain way close.

For example we can search for xi ’s that minimize the sum of squared difference of the
entries ∑

i,j

(dij − ‖xi − xj‖)2

Other measures of closeness of such matrices can be used as well and numerical
algorithms are used for construction of xi ’s.

In the previous slide we had the matrix of closeness between points used for construction
of the trees. It was represented by points xi ’s in two dimensional space (k = 2).
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Visualization - multivariate proximity

Illustrative example: correlated multivariate data
We want to construct the bivariate data that are correlated both between the two variables as well as between samples. The data
constitute a N × 2 matrix

X =


X11 X12

.

.

.
.
.
.

XN1 XN2


We want them to be correlated both between rows and between columns. The correlations for matrices of random variables are
often presented through the covariance matrix that is obtained for the vector obtained from the matrix X by stacking columns one
at the top of the other which is denoted by vec(X).

vec(X) =



X11
.
.
.

XN1
X12

.

.

.
XN2


Let Z, ZN , Z2 be N × 2, N × 1, and 1× 2 matrices of iid standard normal variables. Let 1.2 be two dimensional row of ones and
1N. be N dimensional column of ones. We define our data through

X =

√
1− ρ2

√
1− ρ2

0Z + ρ0ZN 1.2 + ρ1N.Z2.

One can see that ρ0 introduces correlation between columns in X and ρ between rows.
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Visualization - multivariate proximity

Correlation matrix

One can verify that the correlation for this matrix variable is

Cov(X) =



 1 ρ2 . . . ρ2

...
...

...
...

ρ2 ρ2 . . . 1



ρ2

0

√
1 − ρ2 0 . . . 0
...

...
...

...
0 0 . . . ρ2

0

√
1 − ρ2


ρ2

0

√
1 − ρ2 0 . . . 0
...

...
...

...
0 0 . . . ρ2

0

√
1 − ρ2


 1 ρ2 . . . ρ2

...
...

...
...

ρ2 ρ2 . . . 1




We see from the off-diagonal blocks that correlation within rows (between columns) is
small if correlation between rows is high due to

√
1 − ρ2.
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Visualization - multivariate proximity

Numerical study – correlated data

N=20 #Sample size
d=2 #Dimension of the predictors
rho=0.85 #Correlation 1
rho0=0.2 #Correlation 2
B=10000 #Bootstrap sample size

#Data two dimensional and size N but correlated both within columns
#and within rows

Z=matrix(rnorm(2*N),nrow=N)
ZN=rnorm(N)
Z2=rnorm(2)
X=sqrt(1-rhoˆ2)*sqrt(1-rho0ˆ2)*Z+rho0*ZN%*%t(rep(1,2))+rho*as.matrix(rep(1,N))%*%Z2

round(X[,1],1)
# -1.2 -1.4 -0.8 -1.1 -2.1 -1.5 -1.8 -2.0 -2.1 -1.1 -0.9
# -0.9 -1.9 -0.9 0.3 -0.7 -2.2 -1.1 -0.3 -2.1

round(X[,2],1)
#-0.2 -0.7 -0.4 0.3 0.3 1.1 0.1 -0.2 0.3 0.6 0.7 -0.8
# 0.4 0.1 0.3 0.4 -0.2 -0.3 0.0 0.9
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Visualization - multivariate proximity

Numerical study, cont. – estimating mean

#Estimate of the common mean (which is zero)

mean(X[,1])+mean(X[,2]) #[1] -1.139279

#Bootstrap estimate

Bmean=vector(’numeric’,B)
for(i in 1:B)
{
BN=sample(1:N,size=N, rep=TRUE)
BX1=X[BN,1]
BX2=X[BN,2]
Bmean[i]=mean(BX1)+mean(BX2)

}

mean(Bmean) #[1] -1.140948

#Bootstrapping coordinates as in random forest
Bmean2=vector(’numeric’,B)
for(i in 1:B)
{

BN=sample(1:N,size=N, rep=TRUE)
delta=rbinom(1,1,0.5)
BX1=delta*X[BN,1]
BX2=(1-delta)*X[BN,2]
Bmean2[i]=mean(BX1)+mean(BX2)

}

mean(Bmean2) #[1] -0.5657908
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Visualization - multivariate proximity

Numerical study, cont. – Monte Carlo study

MC=30 #Monte Carlo sample size
E1=vector("numeric",MC) #MC-values of the bootstrap estimates
E2=E1 #MC-values of the random forest type estimates

for(j in 1:MC) #MC loop
{ Z=matrix(rnorm(2*N),nrow=N)
ZN=rnorm(N)
Z2=rnorm(2)
X=sqrt(1-rhoˆ2)*sqrt(1-rho0ˆ2)*Z+rho0*ZN%*%t(rep(1,2))+rho*as.matrix(rep(1,N))%*%Z2

for(i in 1:B) #Bootstrap loop
{ BN=sample(1:N,size=N, rep=TRUE)

BX1=X[BN,1]
BX2=X[BN,2]
Bmean[i]=mean(BX1)+mean(BX2)

}
E1[j]=mean(Bmean)

for(i in 1:B) #Random forest loop
{ BN=sample(1:N,size=N, rep=TRUE)

delta=rbinom(1,1,0.5)
BX1=delta*X[BN,1]
BX2=(1-delta)*X[BN,2]
Bmean2[i]=mean(BX1)+mean(BX2)

}
E2[j]=mean(Bmean2)

}

Results of the Monte Carlo study,
means and variances of the
estimators:

mean(E1) #[1] 0.13517
mean(E2) #[1] 0.06707397
var(E1) #[1] 0.8352297
var(E2) #[1] 0.2098515
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