
Boosting

September 29, 2019

Boosting September 29, 2019 1 / 23

Motto

Dictionary

boost [bu:st] verb gerund or present participle: boosting
help or encourage (something) to increase or improve.
“a range of measures to boost tourism”

synonyms: improve, raise, uplift, increase, augment, magnify,
swell, amplify, enhance, encourage, heighten, help, promote, fos-
ter, nurture, arouse, stimulate, invigorate, revitalize, inspire, perk
up;

Boosting September 29, 2019 2 / 23

Improving a weak clasifier

Setting

Consider a two-class problem, with the output variable coded as Y ∈ {−1, 1}.
Given a vector of predictor variables X , a classifier G(X) produces a prediction
taking one of the two values {−1, 1}. The error rate on the training sample is

err =
1
N

N∑
i=1

Iyc
i
(G(xi)),

where y c is of the opposite sign to y , i.e. y c = −y .

A weak classifier is one whose error rate is only slightly better than random
guessing (what would be the rate for this?).

Boosting sequentially applies the weak classification algorithm to repeatedly
modified versions of the data and producing in the process a sequence of
classifiers G1, . . . ,GM .

Data are modified to improve the success rate (reduce the error rate).

Boosting September 29, 2019 4 / 23

Improving a weak clasifier

Majority vote

For a sequence of qualifiers
G1(x), . . . ,GM(x), the majority vote with
non-negative weights αi ,

∑M
i=1 αi = 1 is

given by

G(x) = sign

 M∑
m=1

αmGm(x)

It is considered that G1(x)’s is a weak
classifier (not very accurate) but by
intelligently modifying data subsequent
Gm(x), m > 1 are improving their
performance.

The improvement of performance is
obtained by weighting data so that the
emphasis is on the data that were
previously misclassified.

Boosting September 29, 2019 5 / 23

Improving a weak clasifier

Learning on mistakes

Improvement of performance at each step is obtained by weighting the
data so that the emphasis is on the data that were previously
misclassified.

The weights are higher for misclassified data and lower for the correct
one

It can be viewed that the misclassified data increase their percentage
presence (they are ‘repeated’ according to the weights or, in other
words, their empirical distribution is replaced by the distribution given by
the weights)

Start with w1i = 1/N, i = 1, . . .N. For a given αm > 0 (details on its
choice are given later), the recurrently updated weights are

wmi ∼ wm−1i exp(αIyc
i
(Gm(xi)))

and put more emphasis on the misclassified data, where yc is the
opposite sign to y and Iyc

i
(y) is the indicator function.

Boosting September 29, 2019 6 / 23

Improving a weak clasifier

Summary

We obtain a sequence of classifiers G1(x), . . . ,GM(x) and each of these
classifiers is simple – for example, a stump: a single branching point
x̃m,im and the rule that classifies according to the imth coordinate being
bigger or smaller than x̃m,im

They work on subsequently modified data (wmi , xi), i.e. on the data
with distribution given by the weights wmi , i = 1, . . . ,N. These weights
implicitely belong to the decision rule and the logit of the
missclassification rate is evaluated for each rule

αm = log
1− errm

errm

We note that αm should be positive (error rate less 50%) and do not need
to be rescaled to add to one. The final classifier is given by ‘popular vote’

G(x) = sign

(
M∑

m=1

αmGm(x)

)

Boosting September 29, 2019 7 / 23

ADA Boost

Ada Boost Algorithm

Here are details of the adaptive boosting algorithm

Boosting September 29, 2019 9 / 23

ADA Boost

Details on stump classifiers

How Gi ’s are chosen?

The data: (xi , yi).

The weights: wm = (wim).

A stump Gx̃m (single branched tree):
x̃m for the im coordinate and G(xi) is 1 or −1 depending if the imth
coordinate of xi , i.e. xi,im is bigger or smaller than x̃m.

The error rate with respect to weights is the expected value of
Iyc (Gx̃m(x)) with respect to the distribution on xi ’s given by the weights,
i.e.

errwm =
N∑

i=1

Iyc
i
(Gx̃m(xi))wim,

Choose (im, x̃m,im) that yields the most optimal (minimal error) among all
possible stumps as measured by errwm

Boosting September 29, 2019 10 / 23

ADA Boost

Illustrative example

The following artificial example illustrates the power of boosting

The response is deterministic

Y =

{
1 :

∑10
j=1 X 2

j > 9.34
−1 : otherwise

Xj are iid standard normal, 9.34 is the median of the chi-square
distribution with 10 degrees of freedom

The weak classifier is a simple tree with two sets in the partition – a
“stump”.

The splitting variable and the split point are based on minimizing the
mean square error with respect to the distribution given by the weights.

The error variable is either zero (correct) or one (misclassified), thus
mean square error is the same as the mean value. Why?

Boosting September 29, 2019 11 / 23

ADA Boost

Simulating data

d=10
NTrain=2000
NTest=10000

#Predictors
XTrain=matrix(rnorm(NTrain*d),ncol=10)
XTest=matrix(rnorm(NTest*d),ncol=10)

#Response
YTrain=diag(XTrain%*%t(XTrain))>=qchisq(0.5,d)
YTest=diag(XTest%*%t(XTest))>=qchisq(0.5,d)
sum(YTrain)
sum(YTest)

#Ploting 2-dimensional projection

XX1=XTrain[YTrain==1,1:2]
XX2=XTrain[YTrain==0,1:2]

#quartz()
pdf("boostdata.pdf")
plot(XX1,col=’red’,pch="*")
points(XX2,pch="*")
dev.off()

2-dimensional projection of the
training data

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

* * *

*

*

*

*

*
*

*

*

*

*

*
* *

*

*

**

*

*

*

*

*

*

*
*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*
*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

* *

**

*

*

*

*

*
*

*

*

*

*
*

*

*

*
**

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*
*

*

*

*

*

*

*
*

*

*

* *

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

* * *

*

*

*
*

*

*
*

*

*

*

*

*

*

*
*

**

*

*
*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

**

*

*

*
*

*

*

*

*

*

*

*

*

*
*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

* *
**

*

*

*

*

*

*

**

*

*

*

* *

*

*

*

*

*

* *

*

*

*

* *

*

*

*

*

*
*

*

**

*
*

*

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*

*

*

*
*

*

*

*
*

*

*

*

*

*

*

*

*
*

**

*

*

*

*

*

*

*

* **

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*
*

*

*

*

*

*

*

*

* *

*

*
*

*

*

*

*

*

**

*

*

*

*

**

*

*

*

*
*

*
*

*

*

*
*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

**

*

*

*

*
*

*

*

*

*

*

*
*

*

* *
*

*

*

*
*

*

*

*
*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

**

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

* *

*

*

*

*

*

*
*

*

* *

*

*

*

* *

* *

*

*

*

* *

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

**

*
*

*

*

*

*

*

*

* *

*

*

*

*

*
*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

* *

*

*

*
*

*

*

*

*

*

*

* *

*

*

*

*
*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

**

*

*

*
*

*

*

*

*

*

*

*

**

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *
*
*

* *

*

*

**

*

*
*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

**

*

*

*

*

*

*
**

*

*

*

*

* *

*

**

*

*

* *

*

*

*

*

*

*
*

*
*

*

*

*

*

*

*
*

*

*

*

*

*

*
*

*

* *

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

* *
*

*

**

*

*

*
*

*

*
*

*

*

*

*

*

*

*

*
**

*

*

*

*

*

*

*
*

* *

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*
*

*

*

*

*

*

*

*

*

*

*
*

*
*

*

*

*

*

*

*

*
*

*

*

*

*

*
*

*

*

*
*

*

*

*

*

*

*

*

**

*

*

*

*

−3 −2 −1 0 1 2 3
−

3
−

2
−

1
0

1
2

3

XX1[,1]

X
X

1[
,2

] *

*

*

*

*

*

*

*
**

*

*

*
*

*

*

* *

*

*
*

*

*

*
*

*
*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

* *

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*
*

*

*

*
*

*
*

*
*

*

*

*

* *
**

*
*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

**

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*
*

*

*
*

*

*

*
*

*

*

*

*

*
*

*
*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

* *

*

* *

*

*

*
*

*

*

*

*
*

**

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*
*

* *

*

*

*

*

*

*

* *

*

*

*
*

*

*

*
*

*

*

*

*

*

*
*

*
*

*

*

*

*
*

* *

*

*

* *

*

* *

*

*

*

*

* *
*

*

*

*

*

*

*
*

*

* * *

*

*
*

*

*
*

*

*

* *

*

* *

*

*

*

*

*

*

*

*

*

*

* **

* **

*

*
*

*

*

*

*

*

*

**

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*
*

*

*
*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*
*

**

*

*
*

*

*

*

*

* *
**

*
* *

*

*

*

* *
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*
*

*

**

*

*

*

*
* *

*

* **

*

*
*

*

*

*

*

*

*

*

*

*

**

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**
*

*

** *

*

*

*
* *

*

*

* *
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*
*

**

*

*

*

*

*

* *

*
*

*

*

*

*

*

*
*

*

*

*

*

*

*

**
*

*

**

*

*
**

*

*

*
*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

**

*

*

*

*

*

*

**
*

*

*
*

*

*

*
*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*
*

* *

*

*

*

*

**

*

*
* *

*

*

*

*

*

*

*
*

*
*

*

*

*

*

*

*

*

*

*

*

*

*
*

**

*

*

*

*

*

*

*

*
*

*

*
*

*

*

*
*

*

*
*

*

**

*

*

*

*
*

*

*
*
*

*

*

*

*

*

*
*

*
* *

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*
*

*

*
*

* **

*

*

*

*

* *
*

*
*

*

*

*

*

*

*
**

*

*

*
*

*

*

*

*

*
*

* *

*

*

*

**

*

*

*

*

*

*

*

**

*

**

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*
* *

*

*

*

*

*

*

* **

*
*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

**

*

*

*

*

*
*

*

*

*
* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*
*

*

*

*

*

* *

* **

*

*

*

*

*

**

*

*

* *

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*
*

*

*
*

* *

*

*
*

*

*

* *

*

*

* *

**

*

*

*

*

*
*

*

**

*

*

*

* *

*

*

* *

*

*

*

*
*

*

*

**
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

Boosting September 29, 2019 12 / 23

ADA Boost

Results

The initial classifier (based on
a single stump) gets the error
rate 45.8% – only slightly
better than guessing
Boosting improves to the error
rate 5.8% after 400 iteration.
It also outperforms a single
large classification tree (error
rate 24.7%).
“best off-the-shelf classifier in
the world”

Boosting September 29, 2019 13 / 23

ADA Boost

Additive logistic regression – back to the past

What kind of performance do you expect for the presented
Illustrative example from the linear logistic regression?

What about the performance of the additive logistic regression?

Boosting September 29, 2019 14 / 23

Boosting for regression

A regression version of boosting

Fitting a single large decision tree to the data has potential of overfitting – the
boosting approach instead learns slowly.

Regression boosting involves combining a large number of decision trees,
f̂1, . . . f̂B in a recursive process to obtain a combined fit f̂ .

We fit a decision tree to the residuals from the model in the previous step of
boosting – we fit a tree using the current residuals, rather than the outcome Y .

The new decision tree is added into the fitted function in order to update the
residuals.

Each tree is rather small, with just a few terminal nodes, controled by the
parameter d – number of splits.

Fitting small trees slowly improves f̂ in areas where it does not perform well.

The shrinkage parameter λ slows the process down

Boosting September 29, 2019 16 / 23

Boosting for regression

Regression boosting algorithm

Boosting September 29, 2019 17 / 23

Boosting for regression

Regression vs. classification boosting

The regression boosting fit is made of many regression trees fb(x),
b = 1, . . . ,B.

The trees are rather simple, for example, stumps. These are defined by
split points xb,ib and two values f (1)b,ib

and f (2)b,ib
yielding fb(x) depending on

if xib ≥ xb,ib or not (here xib is the ibth coordinate of x).

Similarly to the boosting in classification, it does change the data in the
building tree process.

However it rather changes the response values yi ’s by replacing them by
recalculated residuals. It does not modify xi ’s.

Those trees are contributing with the same small weight λ

f (x) = λ

B∑
b=1

fb(x)

Boosting September 29, 2019 18 / 23

Boosting for regression

Comments on regression boosting

Boosting has three tuning parameters:

The number of trees B. Boosting can overfit if B is too large, although this
overfitting tends to occur slowly with increase of B (if at all).

Typically cross-validation is used to select B.

The shrinkage parameter λ, a small positive number. This controls the rate at
which boosting learns.

Typical values are 0.01 or 0.001, and the right choice can depend on the
problem. Very small λ can require using a very large value of B in order to
achieve good performance.

The number d of splits in each tree, which controls the complexity of the boosted
ensemble. Often d = 1 works well, in which case each tree is a stump,
consisting of a single split. In this case, the boosted ensemble is fitting an
additive model, since each term involves only a single variable.

More generally d is the interaction depth, and controls the interaction order of
the boosted model, since d splits can involve (at most) d variables.

Boosting September 29, 2019 19 / 23

Visualization

Identifying important input variables

The input predictor variables are seldom equally relevant.
Often a few of them have substantial influence on the response,
The vast majority are irrelevant and could just as well have not
been included.
Question:
How to quantify contribution of each input variable in
predicting the response?

Boosting September 29, 2019 21 / 23

Visualization

Relative importance – notation

A single decision tree T .

Consider the input variable Xl .

The internal nodes of the tree – the ones obtained during growing a
tree, and J − 1 is their number, so that there is J terminal nodes (why?1).

For each t = 1, . . . , J − 1, let v(t) be the index of splitting variable used
at the t-th node, i.e. Xv(t) is the splitting variable.

Let î2t be the improvement in the measure of the quality of the fit (for
example the reduction of the least squares) due to the splitting of the
region under consideration.

Define a measure of relevance of each predictor Xl :

I2
l (T) =

J−1∑
t=1

î2t Iv(t)(l)

1think through mathematical induction
Boosting September 29, 2019 22 / 23

Visualization

Relative importance

This importance measure is
generalized to boosting tree
expansions by averaging
relevances obtained for each of the
boosting trees

Due to the stabilizing effect of
averaging, this measure turns out to
be more reliable than for a single
tree. Since these measures are
relative, it is customary to assign to
the most influential predictor the
value of 100 and then scale the
others accordingly.

Figure shows the relevant
importance of the 57 inputs in
predicting spam versus email.

Boosting September 29, 2019 23 / 23

	Improving a weak clasifier
	ADA Boost
	Boosting for regression
	Visualization

