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Formulation

Classification goal

Overall goal: We observe certain features of an object and we
want decide to which category (or class, or population) this object
belongs.
The classification of an object to a class is made through a
classification rule.
Goal: Find an effective classification rule.
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Formulation

Discrimination, validation, and testing

Discriminate between classes, i.e. identify relevant features for the
classification problem and propose models and methods that allow to
develop reasonable classification rules – learning phase

Verify how these methods perform on actual data sets and decide for
the optimal method

Test how the optimal method performs on a data set that was not used
for the discrimination and method selection stages.
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Formulation

Data allocation – data mining approach

Allocate data, for example 50% for the learning phase (training),
25% for validation (model/method selection), and 25% for the
testing phase (final model assessment)
Training: using data to propose a number/class of possible
models that maybe adequate.
Model/method selection: estimating the performance of different
models or methods in order to choose the best one.
Final model assessment: having chosen a final model,
estimating its prediction error on ‘fresh’ testing data.
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Formulation

Few examples

A scientist needs to discriminate between earthquake and an underground
nuclear explosion on the basis of signals recorded at a seismological station.

An economist wishes to forecast on the basis of accounting information
those members of the corporate sector that might be expected to suffer financial
losses leading to a bankruptcy.

A veterinarian has information on the age, weight and radiographic
measurements for three groups of dogs: Normal healthy, Bowel obstructed,
Chronic diseased.
A dog enters the clinic and its age, weight and radiographic measurements are
determined. To which group should it be classified?

Automatic spam detector – predicting (classifying) whether the email was
junk email.

Using some available sociometric information extracted from social networks
predict that an individual’s income exceeds $250, 000 per year.
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Basics

Notation

An object with features’ measurement X: p × 1 vector. It belongs to one of two
classes 0 or 1.

A selection rule is a split of the feature space into two parts X0 and X1.

If x ∈ X0 classify to class 0.
If x ∈ X1 classify to class 1.

Y = 0 if the object at hand is in class 0 and Y = 1 if in class 1.

Y is not observed, in general, but the values of Y are known for training,
validation, and test data.

Classification as a prediction binary variable:

R(X) =
{

1; X ∈ X1

0; X ∈ X0

R is dependent entirely on X so it is random only if X is random but in any case if
X is known, then R(X) is known too.
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Basics

Formulation of the problem

Goal: Make R as close as possible to Y (if R is equal to Y then the
prediction/classification is perfect).

Y = 1 or Y = 0 – Y a binary variable (outcome)

X = (X1, . . . ,Xp) – predictor, features

The chances that the object with features X is in the class 1 can be
viewed as the conditional probability given X:

P(X) = P(Y = 1|X) = P(X1, . . . ,Xp)

Features can be viewed random or not. If they are not random the above
is considered as a probability dependent on features.

If they are viewed random the classification rule can exploit their random
distributions.
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Basics

How to define R (to decide for regions X0 and X1)?

Three major approaches based on probability:

Use binomial likelihoods for Y given that X are non-random, this was
discussed before as the logistic regression:

log
P(Y = 1|X1, . . . ,Xp)

P(Y = 0|X1, . . . ,Xp)
= α+ f1(X1) + · · ·+ fp(Xp)

Use likelihoods for X if one can consider them X to be random – the binary
value of Y gives a choice of parameters for the distribution of X:

g(x|Y = 1) = g1(x)
g(x|Y = 0) = g0(x)

The likelihood ratio with estimated parameters can be used to define a
classification rule.

Assume prior distribution for Y treat X as random and use posterior
probabilities for Y to define a classification rule– Bayesian approach.
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Basics

Logistic regression vs. posterior distributions

The first two approaches are, in fact, connected, see Assignment 3. Namely,
additive logistic regression can be viewed as a likelihood approach with
assumed independence between features Xi ’s.

The main conceptual difference in the approaches is that in the second
approach explanatory variables X (features) are considered random and
some concrete models for their probability distribution can be imposed.

The posterior distribution approach assumes some parametric structure for
distributions of variables Xi ’s plus some prior chances for membership in the
classes.

The approaches are related through Bayes theorem relation

P(Y = 1|X1, . . . ,Xp) ∼ P(X1, . . . ,Xp|Y = 1)P(Y = 1).
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Basics

Geometric approach – without any probability

For the training data find a discrimination plane that the best divides between
two groups. Let a be any vector that is perpendicular to this plane.

Let Px be the projection of x = (x1, x2) to the discrimination plane and a is any
vector perpendicular to it, decide for Group A if

f (x1, x2) = (x− Px)T a = xT a > 0

and Group B otherwise. In the above we used that PxT a = 0. Why is it true?

Note that f (x1, x2) = ‖a‖‖x‖ cosα, where α is the angle between a and x, so we
decide for the membership based if the angle is greater or smaller than π/2.

How good is such a classification rule?
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Comparing rules

Misclassification probabilities with prior distribution

The observations are coming from the two classes according to the prior
distribution given by p0 ∈ [0, 1] and p1 = 1− p0, i.e. Y = 0 if the object in hand
is in Class 0 and Y = 1 otherwise (Class 1) and

P(Y = 0) = p0, P(Y = 1) = p1 = 1− p0

Given that the observation is from Class 0 the chance for it to be misclassified
is denoted by P(1|0) = P(R = 1|Y = 0) and analogously if it comes from Class
1 the chance for it to be misclassified is denoted by P(0|1) = P(R = 0|Y = 1).

P(Error) =P(R = 0|Y = 1)P(Y = 1) + P(R = 1|Y = 0)P(Y = 0) =

= P(0|1)p1 + P(1|0)p0

Expected cost of misclassification: c(0|1), c(1|0) stand for the respective
costs of misclassification:

ECM = c(0|1)P(0|1)p1 + c(1|0)P(1|0)p0
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Comparing rules

General optimal classification rule

The misclassification probability or, in general, the expected cost of
misclassification can be used to compare different classification rules.

We also have the following general mathematical result:
ECM is minimized by choosing

R =


0;

P(Y = 0|x)
P(Y = 1|x) >

c(0|1)
c(1|0)

1;
P(Y = 1|x)
P(Y = 0|x) >

c(1|0)
c(0|1)

This shows that if there is no misclassification costs, then the rule that minimizes
misclassification probability is given by

R =


0;

P(Y = 0|x)
P(Y = 1|x) > 1

1;
P(Y = 1|x)
P(Y = 0|x) > 1
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Comparing rules

Probability ratio rule

The optimality is shown in Assignment 4, i.e. it is shown that the following rule

R =


0;

P(Y = 0|x)
P(Y = 1|x) > 1

1;
P(Y = 1|x)
P(Y = 0|x) > 1

has the smallest chance of misclassification.
We observe that the rule is based on the probability ratio.
The probability ratio has a natural interpretation:

Choose what is more probable!

Since the log is an increasing function, one can use the log-likelihood ratio (and
no!, the log of the ratio is not the ratio of logs):

R =


0;

logP(Y = 0|x)
logP(Y = 1|x) > 1

1;
logP(Y = 1|x)
logP(Y = 0|x) > 1
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Comparing rules

Posterior probability ratio vs. likelihood ratio

Given features x0, the posteriori probabilities are P(Y = 0|x0) and
P(Y = 1|x0).
These do not require prior for Y neither the assumption of
randomness of X.
Define

R(x0) =

{
0; P(Y = 0|x0) > P(Y = 1|x0)
1; otherwise

If X is random and the prior distribution of Y is given, then

P(Y = 0|x)

P(Y = 1|x)
=

P(x|Y = 0)P(Y = 0)

P(x|Y = 1)P(Y = 1)
=

f0(x)p0

f1(x)p1

If p0 = p1, then the classification is equivalent to the one that is
based on the fitted likelihood ratio of X.
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Normal likelihood

Two normal populations different in means

Suppose fi(x) is N(µi ,Σ), i = 0,1.

fi(x) =
1

(2π)p/2|Σ|1/2 exp(−1
2

(x− µi)
′Σ−1(x− µi))

so that

ln

(
f0(x)

f1(x)

)
= (µ0 − µ1)′Σ−1x− (µ0 − µ1)′Σ−1(µ0 + µ1)/2

Linear classification rule: Take R = 0 if

(µ0 − µ1)′Σ−1x− 1
2

(µ0 − µ1)′Σ−1(µ0 + µ1)

≥ ln(p1/p0)
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Normal likelihood

Linear classification – likelihood for the normal case

The following graphs illustrate the method when there are just two features used
to classify

Thus it corresponds to the geometric rule we mentioned without reference to
probability distributions

If the probabilities on the pictures are accurate can you give upper bound on the
misclassification rate? Does it depend on with what probabilities classes are
occurring (prior probabilities of Y = 0 and Y = 1)?

Classification – Fundamentals and Overview September 17, 2019 20 / 31



Normal likelihood

Discrimination Step – Estimating from the data

For unknown µi and Σ these are estimated by x̄i , i = 0,1 and

S =
(n1 − 1)S1 + (n0 − 1)S0

n1 + n0 − 2

With y = (x̄0 − x̄1)′S−1x = ˆ̀′x and

yi = (x̄0 − x̄1)′S−1x̄i = ˆ̀′x̄i

Some simple algebra leads to the classification rule.
Classification rule: Classify x into G0 (Y = 0) if

y >
1
2

(y0 + y1)

Linear discriminant function
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Normal likelihood

The case Σ0 6= Σ1

ln

(
f0(x)

f1(x)

)
= −1

2
x′(Σ−1

0 −Σ−1
1 )x + (µ′0Σ

−1
0 − µ′1Σ

−1
1 )x

−1
2

ln

(
|Σ0|
|Σ1|

)
− 1

2
(µ′0Σ

−1
0 µ0 − µ′1Σ

−1
1 µ1)

Classification rule is: Classify x into G0 (Y = 0) if

−1
2

x′(Σ−1
0 −Σ−1

1 )x + (µ0Σ
−1
0 − µ1Σ

−1
1 )x

≥ k + ln(p2/p1)

where
k =

1
2

ln(|Σ0|/|Σ1|) +
1
2

(µ′0Σ
−1
0 µ0 − µ′1Σ

−1
1 µ1)

Quadratic discriminant function
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Normal likelihood

Classification based on data – testing phase

Classification rules based on observations give regions X̂0, X̂1.
AER=Actual Error Rate

AER = p0

∫
X̂1

f0(x) dx + p1

∫
X̂0

f1(x) dx

AER can be estimated by APER (apparent error rate) based on the
“confusion matrix”:

Predicted
belonging to
G0 G1

Actual G0 n0c n0m n0
belonging to G1 n1m n1c n1

APER=Apparent Error Rate= n0m+n1m
n0+n1

=the proportion misclassified.
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Normal likelihood

Illustration of linear and quadratic classifications

Methods extend to more than just two groups

Here we illustrate the linear and quadratic classification into three
classes

One can use (cross)validation step to chose between the two methods
of classification
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Component mixture

Mixture model

We assume that the feature data X’s are coming from two different
models.
The two models are possible and from which model the data are
arriving is indicated by a binary (generally unobserved) variable Y

X0 ∼ N(µ0,Σ
2
0)

X1 ∼ N(µ1,Σ
2
1)

X = (1− Y )X0 + Y X1,

We assume that Y is equal 0 or 1, with probabilities p0 and
p1 = 1− p0, respectively.
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Component mixture

Complete model for the data

Density

gX,Y (X,Y ) =

{
p0φθ0 (x) : Y = 0
p1φθ1 (x) : Y = 1.

the densities φθ0 , φθ1 do not need to be normal although we focus on this
case, for illustration.

Parameters: θ = (p0, θ0, θ1) = (p0,µ0,Σ0,µ1,Σ1)

Full data loglikelihood

l(θ; xi , yi ) =
N∑

i=1

((1− yi ) log (φθ0 (xi )) + yi log (φθ1 (xi )))

+
N∑

i=1

((1− yi ) log p0 + yi log p1)
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Component mixture

Training phase

We note that for the training data we assume that Yi ’s are given.
The MLE of (µ0,Σ0,µ1,Σ1) would be the sample means and
sample covariances corresponding values of xi ’ and the estimate
of p1 would be the proportion of Yi ’s that are equal to one.
In the general case of an arbitrary distribution φθ we find the MLE
of θ (or any other suitable method) by whatever means that are
available for this distribution.
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Component mixture

Classification rule

Classification can based on

R =


0;

P(Y = 0|x)

P(Y = 1|x)
=
φθ̂0

(x)p̂0

φθ̂1
(x)p̂1

>
c(0|1)

c(1|0)

1;
P(Y = 1|x)

P(Y = 0|x)
=
φθ̂1

(x)p̂1

φθ̂0
(x)p̂0

>
c(0|1)

c(1|0)
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Component mixture

Final remarks

We have seen several different approaches to the classification problem.

It is not obvious a’priori which one will work for a given data set.

Step One: This is the nature of the data mining approach to try several
such methods on the training data

Step Two: Validate the best one based on validation

Step Three: Test the chosen one on the test data.

Only then, one should propose it for the use outside of available data
sets

The methods could be sequentially improved once the new data for
classification are arriving
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Component mixture

Quotation

The classification of facts, the recognition of their sequence and
relative significance is the function of science, and the habit of forming

a judgment upon these facts unbiased by personal feeling is
characteristic of what may be termed the scientific frame of mind.

Karl Pearson The Grammar of Science (1900)∗

By Elliott & Fry - N.P.G.

∗The founder of the world’s first university statistics department at University College
London
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