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Motto

My nature is to be linear, and when I’m not, I feel
really proud of myself.

Cynthia Weil – a songwriter
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Introduction

Email spam – classification problem

Statistical learning/data mining nomenclature:

Training, validating, testing data: Total available data: 4601 email messages,
the true outcome (email type): email or spam is available, along with the relative
frequencies of 57 of the most commonly occurring words and punctuation marks.

In the data mining/big data approach we divide the data into three groups

Training data – a half or more of the data
Validating data – approximately a half of the remaining data
Testing data – the rest of the data

Objective: automatic spam detector – predicting whether the email was junk
email

Supervised problem: the outcome is the class (categorical) variable
email/spam.

Classification problem: the outcomes are discrete (bi-) valued
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Introduction

Features, i.e. predictors

What could be used to predict the outcome? Suggestions?

48 quantitative predictors – the percentage of words in the email that
match a given word. Examples include business, address,
internet, free, and george. The idea was that these could be
customized for individual users.

6 quantitative predictors – the percentage of characters in the email that
match a given character. The characters are ch;, ch(, ch[, ch!, ch$,
and ch#.

The average length of uninterrupted sequences of capital letters:
CAPAVE.

The length of the longest uninterrupted sequence of capital letters:
CAPMAX.

The sum of the length of uninterrupted sequences of capital letters:
CAPTOT.
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Introduction

Statistical Learning Framework

Data rich situation – we can afford a lot of data
Model fitting – Training set
Model selection – Validation set (tuning some parameters of
the fit or choosing between different models) 1

Model assessment – Testing set for the model that was
decided to yield the best prediction rate

Training set: 3065 observations (messages) – the method will be
based on these observations
Test set: 1536 messages randomly chosen – the method will be
tested on these observation
In this example there is no validation set since the
cross-validation approach will be used instead.

1This part is often replaced by the cross-validation approach that will be discussed
later.
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Introduction

Formalization of the problem

Coded: spam as ‘one’ and email as ‘zero’
p = 57 – the number of predictors
X1, . . . ,Xp – the predictors themselves
X – the space of possible values for predictors, i.e.
(X1, . . . ,Xp) ∈ X
Main Task: Divide X into two disjoint sets X0 and X1 and if
(X1, . . . ,Xp) ∈ X0 clasify it as email, otherwise it is a spam.
How to divide? – Ideas
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Introduction

Conceptual framework

Suppose that for each randomly selected e-mail message there is
a probability that it is a spam.
Define a random variable Y that takes value 1 in the case, when
a selected message is a spam and 0 otherwise
For each randomly chosen message we observe value of
predictors X = (X1, . . . ,Xp). They are also random.
The model is completely described by the joint distribution of
(Y ,X ). But since X is observable, we are interested only in the
conditional distribution of Y given X , which is given by

P(x) = P(Y = 1|X = x),

i.e. by the probability that a message is a spam, given that it is
characterized by X = x .
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Introduction

Measuring quality of classification

How can we measure the quality a classification method?

One way is to require that we want very little spam to not be detected.

A simple rule that every message is a spam would detect all spams but
the method is not good – no messages anymore!

Relaxing the strict requirement, we may look only at the methods that
will not detect at most α100% spams.

Among those methods we would like to choose the one that has the
smallest percentage of good messages to be classified as spams.

Finally, and probably most appropriately, we can reverse the role of
spam and proper e-mail, i.e. set a strict requirement for the small
percentage of e-mail α100% to be classified as spam and among
methods satisfying it, we would prefer the one that has the smallest
percentage of misclassified spams.
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Introduction

Misclassfication rates

In our probabilistic setup, the chances (percentages) that a regular email
is classified as a spam are

α = P(X ∈ X1|Y = 0)

while the chances that a spam message is classified as e-mail

β̄ = P(X ∈ X0|Y = 1)

These two numbers, α and β̄ are the important characterizations of the
classification method given by X0. We want them to be as small as
possible.

By the Bayes theorem2

P(X ∈ X1|Y = 0) =
P(Y = 0|X ∈ X1)P(X ∈ X1)

P(Y = 0|X ∈ X1)P(X ∈ X1) + P(Y = 0|X ∈ X0)P(X ∈ X0)

P(X ∈ X0|Y = 1) =
P(Y = 1|X ∈ X0)P(X ∈ X0)

P(Y = 1|X ∈ X0)P(X ∈ X0) + P(Y = 1|X ∈ X1)P(X ∈ X1)

2
Review the concept of conditional probabilities, the total probability formula, and the Bayes theorem!
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Introduction

Estimate P(X1, . . . ,Xp)

We have seen for the proper analysis of the methods one needs
the probability P(x) of spam given X = x. For example in the
Bayes theorem, we have P(Y = 1|X ∈ X0) and simple property of
the conditional probabilities yields

P(Y = 1|X ∈ X0) = E (P(X )) ,

where E(·) stands for an expectation of a random variable.
The main objective now is to find (estimate) P(X1, . . . ,Xp).
How? – Any ideas?
A simplistic way of doing this:

Take all the predictors (X1, . . . ,Xp) in the training sample and
compute frequencies

P̂(X1, . . . ,Xp) =
# of times the predictor yields spam

# of times the predictor occurs in the training sample
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Introduction

There is a problem

The training sample may not have all possible values in the
predictor value space X
Even for these values that are present in the sample it maybe too
few values to get accurate estimate.
For these reasons our estimate maybe very un-smooth.
Smoothing methods are needed.
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Additive Logistic Regression

Additive Logistic Regression

The email spam example is a classification problem that is
frequently encountered in a variety of situations
The additive logistic regression is the model of choice – very
popular in medical sciences (‘one’ can represent death or relapse
of a disease).
Y = 1 or Y = 0 – a binary variable (outcome)
X = (X1, . . . ,Xp) – predictor, features
A simple but non-linear in Xj ’s model for the logit function

log
P(Y = 1|X )

P(Y = 0|X )
= α + f1(X1) + · · ·+ fp(Xp)

Problem is reduced to estimation of α, fi ’s
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Additive Logistic Regression

Terminology

We call the model

log
P(Y = 1|X )

P(Y = 0|X )
= α + f1(X1) + · · ·+ fp(Xp)

additive because each predictor Xi enters the model individually
through adding function fi(Xi). No interaction terms such as
f (X1,X2), which would indicate some interaction between feature
X1 and X2.
The model will be called logistic regression if each of fi is linear
function of Xi , i.e. fi(Xi) = βiXi .
In additive logistic regression no parametric form is assumed for fi .
One can consider other than linear parametric models, and one
can mix various parametric models with non-parametric.
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Additive Logistic Regression

How to connect model with the data?

The data have the form

(yi , xi1, . . . xip),

where the index i runs through samples (e-mail messages in our
example).
The additive logistic regression is written as

log
P(Y = 1|X )

P(Y = 0|X )
= α + f1(X1) + · · ·+ fp(Xp)

How to connect the two to make a fit?
Through the likelihood!
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Additive Logistic Regression

Binomial model for response

It is easy to notice the following equivalent formulation of the additive logistic
regression model

P(Y = 1|X)

1− P(Y = 1|X)
= eα+f1(X1)+···+fp(Xp)

p(X) = P(Y = 1|X) =
eα+f1(X1)+···+fp(Xp)

1 + eα+f1(X1)+···+fp(Xp)

Model for the likelihood: If (y1, . . . , yN) are the observed 0-1 outcomes,
corresponding to (x1, . . . , xN), the likelihood is

N∏
i=1

pyi
xi

(1− pxi )
1−yi

where px = p(x). Thus log-likelihood is

N∑
i=1

yi (α + f1(Xi1) + · · ·+ fp(Xip))− log(1 + eα+f1(Xi1)+···+fp(Xip))

Generalized Additive Models September 10, 2019 17 / 43



Additive Logistic Regression

Maximizing likelihood in linear case

The log-likelihood function in the classical (linear) logistic regression case is

`(α, β) =
∑

yi (α + β1Xi1 + · · ·+ βpXip))− log(1 + eα+β1Xi1+···+βpXip )

The function is non-linear in α and β’s despite it the logit function was linear
function of them.

The first and the second derivatives are easily computable and application of the
Newton-Raphson algorithm that uses quadratic approximations can be utilized
for computation of the maximum and the resulting MLE α̂ and β̂j , j = 1, . . . , p.
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Additive Logistic Regression

Newton-Raphson method – basic ideas

Named after Isaac Newton and Joseph Raphson

Finding successively better approximations to zeros of a real-valued function f

We begin with a first guess x0 for a root of the function f.

A better approximation x1 is

x1 = x0 −
f (x0)

f ′(x0)
.

Geometrically, (x1, 0) is the intersection with the x-axis of the tangent to the
graph at (x0, f (x0)).

The process is repeated as

xn+1 = xn −
f (xn)

f ′(xn)

until a sufficiently accurate value is reached.
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Additive Logistic Regression

A picture is worth thousand words
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Additive Logistic Regression

Some calculus formulas for our likelihood

To maximize the log-likelihood will require the derivative and the second
derivatives of the likelihood. They can be obtained by application basic
multivariate calculus. We report the results without showing (simple) derivations
(see also Assignment 3).

The first derivatives

∂`

∂α
=

N∑
i=1

(yi − p(xi , α, β)),

∂`

∂βj
=

N∑
i=1

xij (yi − p(xi , α, β)), j = 1, . . . , p

The N-R algorithm requires also the second-derivatives that constitute the
Hessian matrix

∂2`(α, β)

∂(α, β)∂(α, β)T = −
N∑

i=1

xixT
i p(xi ;α, β)(1− p(xi ;α, β)).
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Additive Logistic Regression

Score equations

To maximize the log-likelihood, we set its derivatives to zero

∂`

∂α
=

N∑
i=1

(yi − p(xi , α, β)) = 0,

∂`

∂βj
=

N∑
i=1

xij (yi − p(xi , α, β)) = 0, j = 1, . . . , p

which are p + 1 equations nonlinear in α and βj ’s.
The first score equation specifies that

N∑
i=1

yi =
N∑

i=1

p(xi , α, β),

i.e. the expected number of ‘ones’ matches their observed number.
The Newton-Raphson algorithm requires the second-derivative or Hessian
matrix

∂2`(α, β)

∂(α, β)∂(α, β)T = −
N∑

i=1

xixT
i p(xi ;α, β)(1− p(xi ;α, β)).
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Additive Logistic Regression

Newton-Raphson method

Starting with (αold , βold ), a single Newton update is

(αnew , βnew )) = (αold , βold )− ∂2`(αold , βold )

∂(α, β)∂(α, β)T

−1
∂`(αold , βold )

∂(α, β)

In the above we see clear analogy with the one dimension version of the method
seen in the previous slides.
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Additive Logistic Regression

Summary of the N-R method

Setting:
X the N × (p + 1) matrix of xi values,
p the vector of fitted probabilities with i th element p(xi ;α

old , βold )
W a N × N diagonal matrix of weights with the i th diagonal element
p(xi ;α

old , βold )(1− p(xi ;α
old , βold ))

we get
(αnew , βnew ) = (XT WX)−1XT Wz,

where z = Xβold + W−1(y− p).

We see that this algorithm repeatedly solve the least square problem with
weights W.

Iteratively Reweighted Least Squares
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Generalized Additive Models

Generalized Models for Regression

Similar approach as was seen in the logistic regression one can
apply to general regression model
Consider an arbitrary typically continuous response variable Y .
We have p predictors X1, . . . ,Xp and we want to extend beyond
the linear regression model.
We want non-linear models

Y = α + f (X1, . . . ,Xp) + ε,

with f to be estimated.
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Generalized Additive Models

Generalized additive model – extending beyond
linearity

In the generalized additive model

Y = α + f1(X1) + . . . fp(Xp) + ε,

the functions fj ’s are unknown and possibly non linear
We want an automatic fit of functions fj
Observed predictors

X =
[
xij
]

i=1,...,N,j=1,...,p

Consider prescribed tuning parameters λj corresponding to the
smoothness of the fit to fj (higher value of λj leads to smoother
estimate)
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Generalized Additive Models

Using splines for the multivariate predictors

In the generalized additive model we have more than one
predictor variables, i.e. we have p predictors X1, . . . ,Xp.
However we want an automatic fit of the functions fj , j = 1, . . . ,p in
a similar way as we have seen for the cubic spline fitting with one
predictor.
The additive form of the dependence allows us utilize the
previous penalized sum of square approach.
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Generalized Additive Models

Penalized sum of squares

A smooth solution that minimizes

N∑
i=1

yi − α−
p∑

j=1

fj (xij )

2

+

p∑
j=1

λj

∫
fj ”(t)2dt

The solution is α̂ = ȳ and f̂j such that for each j = 1, . . . ,p:

N∑
i=1

f̂j (xij ) = 0

and f̂j are smooth cubic splines with knots at each of xij , i = 1, . . . ,N.

Evaluating smoothing cubic splines was discussed before in the lecture
and in the discussion sessions.
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Generalized Additive Models

Backfitting

Fitting a model involving multiple predictors.

Repeatedly updating the fit for each predictor in turn, holding the others fixed.

Each time we update a function, we simply apply the fitting method for that
variable to a partial residual.

A partial residual for X3 in the model yi = f1(xi1) + f2(xi2) + f3(xi3) + εi , for
example, has the form ri = yi − f1(xi1)− f2(xi2).

We treat this residual as a response in a non-linear regression on X3.

In the following discussion for the j th predictors: x1j , . . . , xNj , and the
corresponding response values u1, . . . , uN the smoothing cubic spline is denoted
by Sj (u1, . . . , uN).
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Generalized Additive Models

The Backfitting Algorithm for Additive Models

The second step is taken for stability reasons to assure that

N∑
i=1

f̂j(xij) = 0
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Smoothing splines and logistic additive regression

Logistic additive regressions – more work

Fitting functions f1, . . . , fp in the logistic additive model is slightly
more challenging than in the regression set-up.
Smoothing splines can still be used.
But it will require some modification to the backfitting algorithm.
It is not very important to know details.
If one is interested then they can be found in
Hastie, T. and Tibshirani, R. (1990) Generalized Additive
Models, Chapman & Hall, London.
We will briefly overview the method.
Let us start with a recap or smoothing splines.
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Smoothing splines and logistic additive regression

Smoothing splines – regularizing by a penalty

Spline basis methods that avoids the knot selection
It is using the maximal set of knots
It is not overfitting because of penalizing irregularity
It is estimated by a linear function outside the range of predictors
(smoothing on the boundaries)
It minimizes the penalized residual sum of squares

PRSS(f , λ) =
N∑

i=1

(yi − f (xi))2 + λ

∫
f ”(t)2dt

λ = 0: any fit that interpolates data exactly.
λ =∞: the least square fit (second derivative is zero)
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Smoothing splines and logistic additive regression

Smoothing B-splines

We fit by the cubic splines (see previous lectures) with the
maximal number of knots

f (x) =
N+4∑
j=1

γjBj(x) (1)

The solution has the form

γ̂ =
(

BT B + λΩB

)−1
BT y,

where

ΩB =

[∫
B′′i (t)B′′j (t) dt

]
To see this substitute (2) to the PRSS – it becomes a regular least
squares problem
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Smoothing splines and logistic additive regression

Generalized additive models – summary

Goal: fitting the generalized additive model

Y = α + f1(X1) + . . . fp(Xp) + ε,

with fi smooth splines with the smoothing parameter λi .

Method: minimizing penalized sum of squares

Solution: for a single predictor there is an explicit solution

f (x) =
N+4∑
j=1

γ̂jBj (x), (2)

where Bj (x)’s are the cubic splines with the maximal number of knots located at
the predictor values xi ’s,

γ̂ =
(

BT B + λΩB

)−1
BT y,

where

ΩB =

[∫
B′′i (t)B′′j (t) dt

]
, B = [Bj (xi )]
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Smoothing splines and logistic additive regression

Algorithm for solution in the general case

Goal: fitting the generalized additive model

Y = α + f1(X1) + . . . fp(Xp) + ε,

with fi smooth splines with the smoothing parameter λi .

Method: minimizing penalized sum of squares

Solution: In a generalized case, apply the backfit algorithm, the key step is
finding smoothing spline f̂j that fits x1j , ..., xNj to

u1 = y1 − ȳ −
∑
k 6=j

f̂k (x1k ), ..., uN = yN − ȳ −
∑
k 6=j

f̂k (xNk )

(this spline was denoted by Sj (u1, ..., uN), or Sj (u), and its argument is x , not
shown explicitely), so that f̂j = Sj (u1, . . . , uN). In the algorithm f̂j ’s are recycled
until convergence.

The smoothed spline Sj is computed the same as before in the one predictor
case except now y is replaced by u, and xi becomes xij .
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Smoothing splines and logistic additive regression

Generalized additive logistic regression

Goal: Fitting a simple but non-linear in Xj ’s model for the logit function

log
P(Y = 1|X )

P(Y = 0|X )
= α + f1(X1) + · · ·+ fp(Xp)

using smoothed splines

There are no explicit ‘responses’ in this case, i.e. the left hand side of the above.
But there is likelihood:

N∏
i=1

pyi
xi

(1− pxi )
1−yi

and the log-likelihood is

N∑
i=1

yi (α + f1(Xi1) + · · ·+ fp(Xip))− log(1 + eα+f1(Xi1)+···+fp(Xip))

Generalized Additive Models September 10, 2019 38 / 43



Smoothing splines and logistic additive regression

Maximizing the penalized log-likelihood

The log-likelihood is non-linear
N∑

i=1

yi (α + f1(Xi1) + · · ·+ fp(Xip))− log(1 + eα+f1(Xi1)+···+fp(Xip))

In analogous approach to the penalized least squares, we can maximize it with
the penalty term

N∑
i=1

yi (α + f1(Xi1) + · · ·+ fp(Xip))− log(1 + eα+f1(Xi1)+···+fp(Xip))−

−
p∑

j=1

λj

∫
f ′′j (t)2 dt

The solution is obtained by combination of the backfit algorithm with the
Newton-Raphson method of maximizing the likelihood.
The resulting algorithm is referred to as the local scoring algorithm (see
Algorithm 9.2 in Textbook II).
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Smoothing splines and logistic additive regression

The local scoring algorithm
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Smoothing splines and logistic additive regression

Example from the textbook – spam data

We apply a generalized additive model to the spam
data.

The data consists of information from 4601 email
messages (random test set of size 1536 the rest is in
the training set), in a study to screen email for ‘spam’
(i.e., junk email coded as one). (The data was donated
by George Forman from Hewlett-Packard laboratories,
Palo Alto, California – the reason for the counts of
george as a predictor.)

After some tweaking the model the fit was made for the
generalized additive logistic regression model using a
cubic smoothing spline with a nominal four degrees of
freedom for each predictor. (i.e. for each predictor Xj ,
the smoothing-spline parameter λj was chosen so that
trace[Sj (λj )]1 = 4, where Sj (λ) is the spline operator
matrix constructed using the observed values xij ,
i = 1, . . . ,N (a way of specifying the smoothing in
such a complex model).

Most of the spam predictors have a very long-tailed
distribution so before fitting the GAM model, we
log-transformed each variable (actually log(x + 0.1)),
(the plots in Figure 9.1 are in the original variables).
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Smoothing splines and logistic additive regression

Results

The confusion table of the additive logistic regression fit based on
test data set

The overall error rate is 5.3%. By comparison, a linear logistic
regression has a test error rate of 7.6%.
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Smoothing splines and logistic additive regression

Results, cont.

Table 9.2 shows the highly
significant predictors.

For ease of interpretation, the
contribution for each variable is
decomposed into a linear
component and the remaining
nonlinear component.

The top block of predictors are
positively correlated with spam,
while the bottom block is
negatively correlated.

The linear component is a
weighted least squares linear fit
of the fitted curve on the
predictor, while the nonlinear
part is the residual.
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