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Motto

“A picture is worth a thousand words”
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Fitting a non-linear curve

A picture
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Try to sketch a denoised relation between X and Y .
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Fitting a non-linear curve

Noisy sine function

Let us consider the following non-linear regression model

non-linear regression

Y = f (X ) + ε

where X is an explanatory variable, ε is a noisy error and Y is an outcome variable
(aka response or dependent variable).

The model is non-linear when f (X ) is not a linear function of X . Consider for
example f (X ) = sin(X ).
A sample from such a model
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Fitting a non-linear curve

Noisy Sine R-code

#Non-linear regression

X=runif(50,0.5,8)
e=rnorm(50,0,0.35)
Y=sin(X)+e

pdf("NoisySine.pdf") #Save a graph to a file
plot(X,Y)
dev.off() #Closes the graph file
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Fitting a non-linear curve

How to (re-)discover a non-linear relation
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We are now interested to recover from the above data the relation that
stands behind them?

In practice we do not know that there is any specific function (in this case
sine function) involved.

We clearly see that the relation is non-linear.

We want a standardized and automatic approach.

Any ideas?
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Fitting a non-linear curve

Piecewise constant

We first divide the domain into disjoint regions marked by the knot
points ξ0 < ξ1 < · · · < ξn < ξn+1.
ξ0 the begining of the x-interval and ξn+1 its end
On each interval we can fit independently.
For example by constant functions
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Fitting a non-linear curve

Piecewise linear

Where the difference between the two pictures lies?

The second is continuous – a linear spline.

Fit is no longer independent between regions.

How to do it?
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Fitting a non-linear curve

Analysis of the problem

How many parameters there are in the problem?
3-intercepts + 3-slopes − 2-knots = 4
(we subtract knots because each knot sets one equation to fulfill
the continuity assumption)
The problem should be fitted with four parameters.

From now on we assume the knots locations are decided for and
not changing.
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Fitting a non-linear curve

Making non-linear linear

What is the minimal number of vectors needed to express linearly any
vector in 4 dimensions? 4

Such vectors are (linearly) independent (none is linearly expressed by
the remaining ones)

Find 4 piecewise linear continuous functions that are ‘independent’, say
h1(X ), h2(X ), h3(X ), h4(X ).

Then any function piecewise linear with the given knots can be written
linearly by them

f (X ) = β1h1(X ) + β2h2(X ) + β3h3(X ) + β4h4(X ) =
4∑

j=1

βjhj(X ).

f (X ) is continuous in X because each of hj(X ) is.

There are four parameters, so that any continuous piecewise linear
function should be fitted by proper choice of βj ’s.
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Fitting a non-linear curve

Basis functions

There many choices for hj , j = 1, . . . , 4.

The following is a natural one

h1(X ) = 1, h2(X ) = X , h3(X ) = (X − ξ1)+, h4(X ) = (X − ξ2)+,

where t+ is a positive part of a real number t .

The model for the data

Yi = β1hi1 + · · ·+ βr hir + εi ,

i = 1, 2, . . . , n, where hij = hj(Xi).

The model in the matrix notation

Y = Hβ + ε,

where H is the matrix of hij ’s.

Fitting problem is solved by fitting the linear regression problem (the least
squares method).

Splines – linear non-linearity September 9, 2019 12 / 26



Fitting a non-linear curve

Extension to smoother version – cubic splines

The piecewise linear splines have discontinuous derivatives at
knots. Why?
We can increase the order of smoothness at the knots by
increasing the degree of polynomial that is fitted in each region
and then imposing the continuity constraints at each knot.
The cubic splines are quite popular for this purpose.
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Fitting a non-linear curve

Illustration – cubic splines
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Fitting a non-linear curve

Basis

Let us count the number of parameters needed.
Number of parameter of a cubic polynomial is: 4
Number of knots is 4 so we have 3 polynomials (we count the right
and the left point of the abscissa’s range)
The number of knots where the smoothness constraints are
imposed: 2
The number of constraints at a knot to have smooth second
derivative: 3 ( the equations for continuity of the functions and their
two derivatives)

Number of the parameters:

3 ∗ 4− 2 ∗ 3 = 6

Example of the (functional) spline basis

h1(X ) = 1, h2(X ) = X , h3(X ) = X 2, h4(X ) = X 3,

h5(X ) = (X − ξ1)
3
+, h6(X ) = (X − ξ2)

3
+
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B-splines

Another Basis – B-splines

There are convenient splines that can be defined recursively called
B-splines.

We consider only the special case of cubic B-splines (see the textbooks
for more general discussion, notation here is slightly changed).

Cubic spline = piecewise cubic with the derivative up to the second
order are continuous

Assume ξ1, . . . , ξK internal knots and two endpoints ξ0 and ξK+1.

Add three artificial knots that are equal to ξ0 and similarly additional
three knots that are equal to ξK+1 for the total of K + 8 knots that from
now on are denoted by τi , i = 1, . . . ,K + 8.

Define recursively functions Bi,m that are splines of the mth order of
smoothness, i = 1, . . . ,K + 8, m = 0, . . . ,3

the 0-order of smoothness is discontinuity at the knots, the first order is
continuity of function, the second order is continuity of the first derivative,
etc
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B-splines

Recursion

For the knots τi , i = 1, . . . ,K + 8 we define Bi,m, i = 1, . . . ,K + 8,
m = 0, . . . ,3
The piecewise constant (0-smooth), i = 1, . . . ,K + 7,

Bi,0(x) =

{
1 if τi ≤ x < τi+1

0 otherwise

Higher (m) order of smoothness , i = 1, . . . ,K + 8−m,

Bi,m(x) =
x − τi

τi+m−1 − τi
Bi,m−1(x) +

τi+m − x
τi+m − τi+1

Bi+1,m−1(x).

Bi,3 are cubic order splines that constitutes basis for all cubic
splines.
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B-splines

Illustration – evenly distributed knots

Splines – linear non-linearity September 9, 2019 19 / 26



B-splines

Illustration – non-evenly distributed knots

Another data set and B-spline basis
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Smoothing splines

Splines without knot selection

The regression problem with one predictor

y = α+ f (x) + ε.

The maximal set of knots: a knot is located at each abscissa
location in the data.
Clearly, without additional restrictions this leads to overfitting and
non-identifiability. Why?
These issues are taken care of since irregularity is penalized.
Outside the range of predictors it is estimated by a linear function
(smoothing on the boundaries).
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Smoothing splines

Penalty for being non-smooth

Minimize the penalized residual sum of squares

PRSS(f , λ) =
N∑

i=1

(yi − f (xi))
2 + λ

∫
f ′′(t)2dt

λ = 0: any fit that interpolates data exactly.
λ =∞: the least square fit (second derivative is zero)
We fit by the cubic splines with knots set at all the values of x ’s
and the solution has the form

f (x) =
N+4∑
j=1

γjBj(x), (1)

where γj ’s have to be found.
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Smoothing splines

B-spline basis

The splines Bj(x), j = 1, . . . ,N + 4, are used in the smoothing
splines, where the initial xi , i = 1, . . . ,N are augmented by 2 end
points defining the range of interest for the total of N + 2 knots.
We have seen that if there is N internal points, then there have to
be N + 4 of the third order splines that are independent in order
for them to constitute a basis. Do the count!
One can compute explicitly the coefficients of the following matrix

ΩB =

[∫
B′′i (t)B

′′
j (t) dt

]
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Smoothing splines

Solution

The solution has the following explicit form

γ̂ =
(

BT B + λΩB

)−1
BT y,

where

ΩB =

[∫
B′′i (t)B

′′
j (t) dt

]
To see this substitute (1) to the PRSS – it becomes a regular least
squares problem that is solved by γ̂.
Further details in Assignment 2.
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Smoothing splines

Example – bone mineral density

The response is the relative change in bone mineral density measured at the spine in
adolescents, as a function of age. A separate smoothing spline was fit to the males
and females, with λ = 0.00022. It can be argued that this choice of λ corresponds to
about 12 degrees of freedom (the number of parameters in a comparable standard
spline fit of the solution). See the textbook for the discussion of transformation from
the degrees of freedom to λ and vice versa.
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