
Name:.......................................................................

Data Mining and Visualization

Assignment 5

Regression Trees, Boosting and Random Forrests

Assignments constitute a part of the examination and must be returned in time. You are
asked to hand in the solutions during a week following the week on which the assignment
has been discussed in classes. You should submit your work to CANVAS.



Problem 1 – Basic concept for binary trees. In the lecture, it was presented that
the partition sets for a binary tree have the form

Rm =

K1⋂
k=1

{x ∈ Rp : xi1k > c1k} ∩
K2⋂
k=1

{x ∈ Rp : xi2k ≤ c2k} (1)

Notationally, this is a complicated expression but it can be read easily from the
graph of a binary tree. Consider the following tree and the corresponding partition

1. For each Rm of the partition sets on the graphs identify explicitly (1) for this
particular simple example of a binary tree.

2. How in words would you explain the meaning of numbers K1 and K2? If p is the
dimension of x-space argue that it is enough to consider K1 ≤ p and K2 ≤ p.



Problem 2 – Regression fit by a binary tree Suppose that we want to make a re-
gression fit using a binary tree. In the lecture we mentioned that the best least
square fit over a particular region of the partition is the average value of the re-
sponse over the points in the region. Here we want to provide the argument for this
claim. We also argue that each additional split in a tree improve the performance
of the tree as measured by the sum of squares.

1. Let X be an arbitrary random variable. Then argue that the quantity a that
minimize

E(X − a)2

is equal to E(X).

2. Using the above fact, argue that to minimize the least squares:

Nm Qm(T ) =
∑

xi∈Rm

|yi − ĉm|2

where Nm is the number of the inputs in Rm one can take

ĉm =

∑
xi∈Rm

yi

Nm

3. Let X and Y be two random variables.

(a) Explain why

V ar(Y ) = E(V ar(Y |X)) + V ar(E(Y |X)).

(b) This relation can be interpreted that on average the conditioning on some
variable is reducing variability as expressed by variance. Please, explain
this statement based on the above relation.

(c) Can you related the above equation with the within clusters and between
cluster variability as discussed in the lecture on clustering methods?

4. Use the above fact to explain that in the binary tree each split is reducing the
mean square error.



Problem 3 – Binary tree for classification. Three measures of improvement in a bin-
ary tree for the classification problem have been mentioned in the lecture.

1. Explain what it means that a function is convex (concave down).

2. Argue that all three measures are convex. Here are their graphs

3. Can you give an argument that this property guarantees that each split in a
tree leads to an improvement (reduction of the measures)?



Problem 4 – ROC curve. The ROC curve when applied to the sensitivity and spe-
cificity can serve as visual comparison of different classification methods. The curve
can be also used to compare two distributions.

1. Plot the ROC curve for the exponential and uniform distribution on [0, 1].

2. Argue that the ROC curve for comparison of two distributions always starts
at (0, 0) and end up in (1, 1).

3. Explain that if the ROC curve is the straight diagonal line, then the distribu-
tions are identical.



The remaining problems are based on a simple simulated data set. The model is
inspired by the example from the lecture on Random Forest. Namely, the features
space is two dimensional, i.e. p = 2, each of the features having a standard Gaussian
distribution with pairwise correlation 0.95, the response Y was generated according
to

P (Y = 1|x1 ≤ 0.5) = 0.2,

P (Y = 1|x1 > 0.5) = 0.8.

Here is a sample of size twenty from the model

y x1 x2

[1,] 0 -0.31 0.17

[2,] 0 -0.07 0.41

[3,] 1 1.05 1.01

[4,] 0 1.38 1.09

[5,] 1 0.20 -0.29

[6,] 0 -0.33 -0.41

[7,] 0 0.12 0.07

[8,] 0 -1.47 -1.73

[9,] 0 -1.88 -1.55

[10,] 0 1.67 1.28

[11,] 0 -0.06 -0.38

[12,] 0 -0.83 -0.42

[13,] 1 1.33 0.84

[14,] 0 -0.47 -0.75

[15,] 0 -0.72 -0.93

[16,] 0 0.02 0.34

[17,] 0 0.05 0.39

[18,] 1 0.51 0.24

[19,] 1 0.41 0.23

[20,] 1 -0.60 -0.33

and the following is R-code that has produced these data

y1=rbinom(20,1,0.2)

rho=0.95

x1=rnorm(20)

x=rnorm(20)

x2=rho*x1+sqrt(1-rho^2)*x

y=(x1<0.5)*y1+(x1>0.5)*(1-y1)

x1=round(x1,2)

x2=round(x2,2)

z=cbind(y,x1,x2)



Problem 5 – Optimal predictor. Intuitively, it appears rather clear that the optimal
predictor for the so simulated data is

G(x) = G(x1, x2) =

{
1 : x1 ≥ 0.5
0 : x1 < 0.5

1. Can you provide a formal argument for the optimality of such a predictor?

2. Can you derive the optimal error rate?

3. Apply the predictor to the given data set? What is the observed error rate?



Problem 6 – R-code. Give a short explanation of the provided R-code, by describing
what each line of the code is doing.

Suppose that the following commands would be executed in R

var(x1)

var(x2)

corr(x1,x2)

corr(x,x2)

corr(x1,x)

Give approximate values to the numbers you would expect to see.



Problem 7 – Classification tree. For the given data, sketch their scatter plot, mark-
ing all 20 points with the values of Y variable.

1. Use misclassification error to build the optimal ‘stump’ for your data.

2. Repeat this with Gini index and deviance (entropy).

3. How much of the improvement you obtain by performing this step?

4. What is the observed misclassification error for this classfier?



Problem 8 – Boosting. One can use the simple stump from the previous step to obtain
boost to the prediction.

1. Evaluate the weights for the boosting algorithm after applying your stump for
classification of the data.

2. Explain the first step of the boosting algorithm based on your computation,
i.e. provide the new re-weighted data for which you would evaluate the next
stump.



Problem 9 – Random Forrest. Explain how would you apply random forrest meth-
odology to the data, i.e. answer the following questions

1. Explain how would you bootstrap the tree.

2. Give an example of a tree that could belong to a random forest.



Problem 10 – Extra Problem (solution is not required except for PhD students)
In the lecture we have discussed the data simulated from chi-square distribution to
illustrate boosting. More precisely, the response is deterministic

Y =

{
1 :

∑10
j=1X

2
j > 9.34

−1 : otherwise

Xj are iid standard normal, 9.34 is the median of the chi-square distribution with 10
degrees of freedom. The weak classifier is a simple tree with two sets in the partition
– a “stump”. The splitting variable and the split point are based on minimizing
the mean square error. Explain how the boosting could be implemented for this
problem and try to write a simple code in R to run the boosting in this illustrative
example.


