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Data Mining and Visualization

Assignment 2

Fitting a line by splines

Assignments constitute part of the examination and must be handed in time. You are
asked to hand in the solutions during a week following the week on which the assignment
has been discussed in classes. You submit an electronic copy of your work to CANVAS.



Problem 1 – Splines and Bootstrap In the lecture, bootstrapping is discussed in the
context of fitting splines in a non-linear regression problem. The bootstrapping of
residuals has been suggested although no formal or even intuitive arguments were
given to support the claim that this kind of bootstrap will actually work in this
case. The following discussion is suppose to provide some rationale for a choice of
bootstrap for the regression case. We need only a heuristic understanding of splines
in context of regression. Please, refer to the lecture notes on splines for more details.

1. For the sake of our discussion, please, sketch on paper an example of data
that would be suitable for applying a spline method of regression fitting. De-
scribe the coordinates on the graph, marking which of them corresponds to the
independent (explanatory) variable and which to the dependent (response or
outcome) variable. Give a hypothetical real life situation in which your data
are corresponding to actual data.

2. For the sketched data, propose the knot points. We consider cubic splines. For
your choice of the knots sketch your best guess of the spline fit to the data.
(By a guess we mean a visual choice of a regression spline fit without making
any numerical calculations.) Mark on the graph the residuals for the proposed
fit.

3. In reality, the following two scenarios can corresponding to this type of the
data.

• Values of the explanatory variable are non-random (fixed) like, for example,
in equal spacing of abscissae. In such a case the only randomness can be
attributed to the response variable.

• Values of the explanatory variable are random so that they can be also
considered as a random sample.

Having these scenarios in mind discuss in which situation the following res-
ampling methods would constitute a valuable bootstrap method of mining your
data:

• Resampling randomly only values of the response variable (Y ).

• Resampling randomly matched pairs of the response and explanatory vari-
ables (X, Y ).

• Resampling residuals as described in the lecture.

Provide one/two sentence argument for your choices.



Problem 2 – Linear Regression Here we review some basic notation of the regression
model. We have response variables Y = (Y1, . . . , Yn) and a matrix of regressor
(explanatory variables) X = [xij]

n,r
i=1,j=1. The assumed model is

Y = Xβ + ε.

Here β is an unknown vector of the parameters and ε is a random noise. The goal
is to estimate β given the set of observations (Y,X).

In the least square approach, one estimates β by minimizing the Eucledean distance
between the observations and the linear model

‖y −Xβ‖2.

In other words, we want to find a point β̂ such that Xβ̂ is the closet point to the
observations y among all Xβ’s.

It follows from the principles of linear algebra that Xβ̂ is the orthogonal projection
ŷ of the observation vector y to the space of spanned by the columns of the design
matrix X. This projection can be expressed as the matrix P = X(X′X)−1X′, so
that

ŷ = Py

β̂ = (X′X)−1X′y

The vector of residuals ε̂ = y − ŷ is orthogonal to the prediction ŷ.



Schematic representation of the regression fit

Sixteen observations on the viscosity of a polymer (y) and two process variables –
reaction temperature (x1) and catalyst feed rate (x2) are shown below:

Compute the following

• Projection matrix P.

• The least square fit β̂.

• Residual to the least square fit.

• Find the prediction for the temperature 80 and catalyst feed rate 14.

In your computation you can assist yourself with a computer program but all im-
portant steps of computations have to be shown.



Problem 3 – Simple Linear Regression In the simple linear regression, the model
for the data is assumed to be Yi = a + bxi + εi, i = 1, . . . , n, with parameters a, b
being real numbers and εi’s are independent with N(0, σ2) distribution. This is a
special case of Y = Xβ + ε.

• Identify X, β, and ε for this special case.

• In a laboratory containing polarographic equipment six samples of dust were
taken at various distances from the polarograph and the mercury content of
each sample was determined. The following results were obtained:

Distance from polarograph,m 1.4,3.8,7.5,10.2,11.7,15.0

Mercury concentration, ng/g 2.4,2.5,1.3,1.3,0.7,1.2

Identify, Y, X, that correspond to the simple linear regression for the above
data, compute (X′X)−1X′, and find the least square estimator β̂ of β using

β̂ = (X′X)−1X′Y.

• Plot the data and the regression fit.



Problem 4 – Fitting non-linear function by linear regression Consider an inter-
val [0, 1] and the following values of the response to certain values of x given in pairs
of (x, y)’s:

(0.2, 5), (0.3, 3), (0.6, 6), (0.7, 2), (0.9, 7).

Answer the following questions

• If you would like to approximate the dependence between y and x by a constant
function, how would you approach to the problem. What would be the least
square fit to the data?

• Explain the same for linear, quadratic, cubic fits. Show how the fits can be
obtained by using the linear regression.

• Which of the cases discussed above corresponds to the classical simple regres-
sion?

• Sketch the obtained fits. Comment what you observe on the graphs.



Problem 5 – B-splines In the lecture we have introduced B-splines as a basis for cubic
splines. They were defined as follows

• Assume ξ1, . . . , ξK internal knots and two endpoints ξ0 and ξK+1.

• Add three more knots that are equal to ξ0 and additional three knots that are
equal to ξK+1 for the total of K + 8 knots that from now are denoted by τi,
i = 1, . . . , K + 8.

• Define recursively functions Bi,m, that are splines of the m − 1th order of
smoothness (0 smoothness is discontinuity), i = 1, . . . , K + 8, m = 1, . . . , 4

• For the knots τi, i = 1, . . . , K+8 we define Bi,m, i = 1, . . . , K+8, m = 1, . . . , 4

• The piecewise constant (0-smooth), i = 1, . . . , K + 7,

Bi,1(x) =

{
1 if τi ≤ x < τi+1

0 otherwise

• Higher order of smoothness , i = 1, . . . , K + 8−m,

Bi,m(x) =
x− τi

τi+m−1 − τi
Bi,m−1(x) +

τi+m − x
τi+m − τi+1

Bi+1,m−1(x).

• Bi,4 are cubic order splines that constitutes basis for all cubic splines.

Consider an interval [0, 1] and only one internal point ξ1 = 1/2.

1. How many total knots for the cubic B-splines are considered according to the
above definition?

2. Write down explicitly all knots τi =’s.

3. Write down explicitly all functions for each recursion step.

4. Sketch the obtained functions.

5. Which of them constitutes the basis for all cubic splines with the given initial
internal knot ξ1 = 1/2.

6. How the computations change if ξ1 = ξ is another internal point, i.e. it is not
equal to 1/2?

7.1 Argue that cubic B-splines are still piecewise cubic polynomials on [0, 1] with
continuous second derivative, i.e. that they are indeed splines and that they
are linearly independent, i.e. one cannot be expressed by a linear combination
of others. Consequently, any piecewise cubic spline can be expressed by a linear
combination of the B-splines.

1This is a more challenging problem for PhD and more mathematically inclined students, for the rest
it is an extra (not required) problem.



Problem 6 – Smoothing splines The following is a simplified account of using smooth-
ing splines to provide generalized additive fit to the regression problem with one
predictor

y = α + f(x) + ε.

• A spline basis method that avoids any knot selection

• It is using the maximal set of knots (knot is located at each location that is
given in the data)

• It is not overfitting because irregularity is penalized

• It is estimated by a linear function outside the range of predictors (smoothing
on the boundaries)

• It minimizes the penalized residual sum of squares

PRSS(f, λ) =
N∑
i=1

(yi − f(xi))
2 + λ

∫
f ′′(t)2dt

• λ = 0: any fit that interpolates data exactly.

• λ =∞: the least square fit (second derivative is zero)

• We fit by the cubic splines with the maximal number of knots equal to the
values of x’s and

f(x) =
N+4∑
j=1

γjBj(x) (1)

Bj(x) are natural splines: linear outside the data range and the cubic polyno-
mial inside of it.

• The solution has the form

γ̂ =
(
BTB + λΩB

)−1
BTy,

where

ΩB =

[∫
B′′i (t)B′′j (t) dt

]
• To see this substitute (1) to the PRSS – it becomes a regular least squares

problem

Discuss the following properties.

1. Explain why if λ = 0 the optimal fit will interpolate data exactly.

2. Explain why if λ = ∞ the optimal fit will be the regular least squares fit of
the regression line.



3. Substitute (1) to the PRSS and express the latter using vector γ = (γ1, . . . , γN+4)
and the matrices

B = [Bij] = [Bj(xi)] ,

ΩB =

[∫
B′′i (t)B′′j (t) dt

]
.

4.2 Compute the derivative of the PRSS with respect to γ and check that it is
equal to zero if

γ =
(
BTB + λΩB

)−1
BTy.

2This is a more challenging problem for PhD and more mathematically inclined students, for the rest
it is an extra (not required) problem.


