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Data Mining and Visualization

Assignment 1

Monte Carlo Method, Maximum Likelihood Estimation
Method of Moments, Bootstrap, Parametric Bootstrap, Splines

Assignments constitute part of the examination and must be handed in time. You are
asked to hand in the solutions during a week following the week on which the assignment
has been discussed in classes. You must submit an electronic copy through CANVAS
system.



Problem 1 – Method of Moments, Maximum Likelihood, MC Study, Bootstrap

In this problem we review some basic concepts of statistics. It is based on the
analysis of Poisson distribution that is a frequently used model to define counting
processes, i.e. processes that counts the number of occurrences of certain events.
For example the daily number of visits to a certain webpage is given in the following
data

107 90 71 102 73 100 73 107 116 83 109 99 76 76 97

116 80 80 104 91 73 118 110 73 107 71 82 80 118 75

One could be interested in knowing if this data can by possible from a Poisson
distribution.

Consider a Poisson random variable X with the parameter λ.

1. Provide the formula for the pdf (probability distribution function) of this dis-
tribution.

2. What is the expected value E(X) and variance V ar(X)?

3. In view of the above relations for the moments, propose two estimators of
the parameter λ that would be based on a sample X1, . . . , Xn of independent
variables having this distribution.

4. Explain in well formulated steps how you could use R (or any other suitable
package) to perform a Monte Carlo study to find out which of these two es-
timators is better. What would be a measure of goodness? Do you have any
common sense expectation which of the two estimators will prove to be better?

5. Perform the Monte Carlo study as explained above and draw conclusions about
which of the two estimators is better. (This part will be performed in Computer
Lab 1, so you may well wait until this session before answering this and related
questions).

6. What is the likelihood for the sample X1, . . . , Xn? What is the log-likelihood?
What is the maximum likelihood estimator of λ?

7. Are the maximum likelihood estimators considered to be good estimators?
Provide reasons for this. Do these properties ‘explain’ the results of the Monte
Carlo study?

8. How formally, without a Monte Carlo study, can it be argued that one estimator
is better than the other in this case?

9. Suppose that you have data x1, . . . , xn that you believe are taken from a Poisson
distribution. Describe a bootstrap study that would investigate this hypothesis.
What are pros and cons of using bootstrap to perform statistical analysis?



10. Use R to carry out the study suggested in the previous part for the data given
for the problem. What are the conclusions? Do the data seem to come from a
Poisson distribution?



Problem 2 – Bootstrap Study for Calibration of DNA Microarray

General introduction

“DNA stands for deoxyribonucleic acid,
and is the basic material that makes up
human chromosomes. DNA microarrays
measure the expression of a gene in a
cell by measuring the amount of mRNA
(messenger ribonucleic acid) present for
that gene. Microarrays are considered
a breakthrough technology in biology, fa-
cilitating the quantitative study of thou-
sands of genes simultaneously from a
single sample of cells. Here is how a
DNA microarray works. The nucleotide
sequences for a few thousand genes are
printed on a glass slide. A target sample
and a reference sample are labeled with
red and green dyes, and each are hybrid-
ized with the DNA on the slide. Through
fluoroscopy, the log (red/green) intensit-
ies of RNA hybridizing at each site is
measured. The result is a few thousand
numbers, typically ranging from say -6
to 6, measuring the expression level of
each gene in the target relative to the
reference sample. Positive values indic-
ate higher expression in the target versus
the reference, and vice versa for negative
values.

A gene expression dataset collects together the expression values from a series of
DNA microarray experiments, with each column representing an experiment. There
are therefore several thousand rows representing individual genes, and tens of columns
representing samples: in the particular example of Figure there are 6830 genes (rows)
and 64 samples (columns), although for clarity only a random sample of 100 rows are
shown. The figure displays the data set as a heat map, ranging from green (negative)
to red (positive). The samples are 64 cancer tumors from different patients.

The challenge here is to understand how the genes and samples are organized. Typ-
ical questions include the following:



(a) which samples are most similar to each other, in terms of their expression pro-
files across genes?

(b) which genes are most similar to each other, in terms of their expression profiles
across samples?

(c) do certain genes show very high (or low) expression for certain cancer samples?”

Assessing variability of the technology
However, before answering such medically important questions, it is often important
to analyze the accuracy of microarray technology and provide a user some standard
estimation of inaccuracy present in the measurements. In such assessment of these
variabilities one is not interested in a discovery of any systematic relations between
gene expressions but rather in the precision of measurements. Our discussion aims to
propose a method to quantify the precision of measurements of gene expressions by
designing an experiment and applying a bootstrap method on the obtained samples.

Thus it is of interest to assess the observational noise in results observed in DNA
microarrays (uncontrollable inaccuracies). In principle, when data are collected each
cell in the dataset matrix (columns are samples and rows refer to genes) may include
its own variability independently of variability of genetic material. To eliminate the
latter in what follows we assume

1. One organ from one subject is selected for testing. The organ is suppose to
have the same genetic composition.

2. Different samples of tissue can be taken from this organ, prepared and applied
to different microarrays.

3. One sample of tissue can be prepared in many replicates to be applied to
different microarrays.

Further specification of the problem

• If one runs experiments by preparing many replicates from the same tissue
sample, then in each cell there will be some variability expressed in different
coloration in the outcomes. Since the samples are made of exactly the same
tissue specimen, this variability is due to variability in the microarray techno-
logy and has nothing to do with variability due to preparation of the genetic
material needed for application on a microarray. This is referred to as the
microarray variability. From technological considerations, it is assumed that
this variability is the same across all cells of a microarray (does not depend on
what a specific gene is considered).

• On the other hand one can run the similar experiment but each time using a
new sample of tissue (although the tissue is taken from the same organ of the
same patient). This again will result in some variability of the observed colora-
tion. This variability contains both the microarray variability and the (tissue)



specimen variability (between different preparations of the tissue). However, it
is no longer assumed that different genes are having the same variability across
different specimen of the tissue.

Our goal is now to design an experiment that collects data and allows for assessment
of these variabilities by the bootstrap method.

Mathematical setup
A microarray yields a matrix of intensities of gene expressions for an individual
sample form a tissue relative to the reference sample of genetic material. More
precisely, let N be the number of investigated genes and n be a number of samples
that are investigated. We assume that there were performed n experiments, each
measuring the relative (to a reference sample) intensities of gene expressions for N
genes. The outcome can be represented by an array of numbers (typically intensities
are gene expression intensities in the range from −6 to 6). Formally, we write

X = (xij)
N,n
i=1,j=1

so that xij denotes the gene expression for the jth experiment and the ith gene.

One can formulate the problem in more precise terms by introducing proper para-
meters of experimental variability. Namely, one can assume that observations in-
volve some true average value µi that may be different for each gene i but not
between different microarrays or tissue samples from the same genetic material.
There will be also some random noise that is the sum of the microarray noise εij
and the specimen noise ε̃ij so that

xij = µi + εij + ε̃ij. (1)

Because the microarray noise is the same for each gene we can assume that the
variance of εij is the same between different genes (represented by i’s). It is also
natural always assume that the variance between samples is constant (the same
conditions of the experiments: the same lab, equipment, personnel, etc). However
the variance of ε̃ij would change from gene to gene. Thus we can represent the
variability of εij by the common variance σ2 and the variability of ε̃ij by σ2

i , i =
1, . . . N .

In a properly organized experiment, the noises should add independently so that
variability from an experiment to an experiment (with different samples of the tissue)
are represented by σ̃2

i = σ2
i + σ2, for i = 1, . . . , N . With this set-up, our goal is to

estimate both σ2 and σ2
i .

We assume that when a spray of the same tissue (the same genetic material) is put
on different microarrays we obtain a version of the experiment given by

x̃ij = µi + εij, (2)



while by using different samples of the tissue sprayed over different microarrays we
obtain the full model in (1).

The task
Here are the conditions of experiment. We assume that we have 30 microarrays and
20 specimen of some neutral tissue (neutral so its genetic content is not relevant for
our purpose, one could call it a ‘calibrating’ tissue). From each such a specimen one
can take as many samples to be sprayed on a microarray as one wishes. Microarrays
cannot be reused. Having these experimental limitations suggest a way to provide
a microarray user with some errors assessment for the type of a microarray used in
the experiment. More precisely, describe how would you estimate the variances σ2

and σ2
i .

1. Describe in detail the experiment that would allow estimation of these para-
meters. Specify a model for data obtained from the so-designed experiment.

2. Propose bootstrap techniques to assess accuracy of the noise parameter estim-
ation.


