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Credits

The target is develop an R-package for data driven basis selection for
stochastic analysis and fda that combines machine learning methods
and uses efficient treatment of spline orthogonalization. The work is
jointly with Xijia Liu, Umeå University and Hiba Nassar, Lund Uni-
versity
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Motivation

Highly dimensional data through functional data

In many recent application, the problem of high dimension
relatively to sample size appears.

One of the approaches to eliminate this ‘overparameterization’ is
through functional data.
In it multidimensional data are conceptually treated as functions.
There are many issues with such approach that arises from the
fact that functions are from infinite dimensional spaces and data
always are finite dimensional.
One of the key problem is a selection of convenient orthonormal
basis.
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Motivation

Functional data

Random functions of, let say, t ∈ Rr observed ‘repetitively’ are
frequently referred to as functional data.

For simplicity, from now on functional data are

(xi)
n
i=1 , (1)

where xi = xi(t)’s, t ∈ [0,1] produced by some random
‘mechanism’.
Reduce random ‘mechanism’ to independent sampling – iid fd
sample
Additionally we assume for each fixed t and s:

σ(t , s) = Cov(X (t),X (s))

is well-defined.

How ‘complicated’ can be such data?
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Motivation

Not very complicated – Karhunen-Loéve Theorem

Theorem (Karhunen-Loéve Theorem – Part I)

If σ(t , s) is continuous, then there exist a square summable sequence of
non-negative numbers λk , an orthonormal basis ek , k ∈ N0 in L2[0,1] and a
sequence of zero-mean variance-one random variables Zi such that

X (t) =
∞∑

k=0

√
λk Zk ek (t),

where the convergence is in the mean squared value and is uniform in t.

Random variables Zk are ‘observable’

Zk =

∫ 1

0
X (t)ek (t) dt/

√
λi .

Krzysztof Podgórski, Lund University Data driven basis selection 6 / 42



Motivation

Convenience of the representation

Theorem (Karhunen-Loéve Theorem – Part II)

The covariance function of the process is represented in the uniform
convergence over [0,1]2 as

σ(s, t) =
∞∑

k=0

λk ek (s)ēk (t). (2)

If we assume that λk is also summable, then the average error in the norm of
L2[0,1] can be bounded as follows

E‖X −
n∑

k=0

√
λk Zk ek‖2

2 =
∞∑

k=n+1

λk EZ 2
k =

∞∑
k=n+1

λk .
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Motivation

When would ‘things’ be easy for a statistician?

If orthonormal basis ek , k ∈ N0 were known, then we would observe
independently for i = 1, . . . ,n

Vk,i =
√
λk Zk,i =

∫ 1

0
Xi (t)ek (t) dt , k = 0,1, . . .

and we can ‘easily’ estimate λk ’s.

The main problem is that the orthogonal basis of eigenfunctions
is not known.

What can be done about it?
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Motivation

From sample of functions to sample of vectors and back

The most common approach in basic steps

1 Pick-up a basis of functions {fk}∞k=0 that spans the space of all possibly observed
functions – somewhat arbitrarily.

2 Choose the number of basis elements N – somewhat arbitrarily.

3 Decompose the observed sample xi in the chosen basis, i.e. evaluate
x̃i,k = 〈xi , fk 〉, take multivariate vectors x̃i ∈ RN do some kind analysis on these
vectors. For example find principal components, etc.

4 ‘Translate’ the obtained conclusions on the functional models by returning to
functions through the originally selected basis {fk}∞k=0. For example
approximating the eigenfunctions {ek}∞k=0 and corresponding eigenvalues from
the Karhune-Loéve decomposition.

Functional or multivariate?
Practically by a ‘non-statistical’ decision of the initial basis selection
the functional problem is reduced in the statistical sense to
a multivariate analysis problem. The rest are mathematical ‘ornaments’
to make things looking ‘functional’.
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Motivation

Criticality of the initial choice of the basis

The following example while purely academic illustrates the point:

Suppose that the basis in K-L {ek}∞k=0 is orthogonal to {fk}N
k=0. (For

example, {ek}∞k=0 = {fk}∞k=N+K , for some K > 0.)

Then all x̃i ∈ RN become equal to zero – we end up with no data.

Even if {ek}∞k=0 is not quite orthogonal to {fk}N
k=0, for example,

{ek}∞k=0 = {fk}∞k=N−K

but the most influential eigenvalues λk ’s correspond to ek ’s that are
orthogonal to {fk}N

k=0 Then the transformation to vectors loses critical
information about the original data.
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Motivation

Criticality of the initial choice of the basis

Sometimes, a remedy is proposed by doing cross-validation data mining on
the model for the ‘optimal’ selection of N.

While it ties statistically (to some degree) the choice of the initial basis with the
data, this generally may lead to vectors with large number of coordinates that are
close to zero (irrelevant).

For example, {ek}∞k=0 = {fk}∞k=N+K , for some very large K > 0, will result with the
initial large number of basis elements fk , k = 1, . . . ,N + K − 1 completely
useless.

Somewhat better, it would be to subsample from {fk}∞k=0 and decide for the
choice that produces the most efficient model (through cross-validation?).

This would tie the base selection to the data, however it is conceptually unclear
how to sample from an infinite set and even if defined it can be computationally
prohibitive to do any cross-validation based ‘optimal’ selection.

Most importantly the important eigenvectors and eigenvalues can be
spread over a large range of basis elements if the latter are chosen
arbitrarily.
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Functional bases

Popular bases orthogonal (O) or not (NO)

the Fourier basis (O):

{
√

2 sin(2πnx); n ∈ N} ∪ {
√

2 cos(2πnx); n ∈ N} ∪ {1}.
the Legendre polynomials for [−1, 1] (O):

Ln(x) =
n∑

k=0

(−1)k
(

n
k

)2(1 + x
2

)n−k (1− x
2

)k

.

the Hermite polynomials on (−∞,∞), with Gaussian measure (O):

Pn(x) = n!
[n/2]∑
k=0

(−1)k

22k

xn−2k

(n − 2k)!k !
.

Wavelets basis (O),
‘Haar’ basis functions (O) for a knot-sequence τ :

Bi,1(x) =

{
1 ; τi ≤ x < τi+1,

0; otherwise,
(3)

for i = 1, ...,K + 1.
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Functional bases

B-spline base

B-splines (NO):

Bi,m(x) =
x − τi

τi+m−1 − τi
Bi,m−1(x) +

τi+m − x
τi+m − τi+1

Bi+1,m−1(x),

for i = 1, ...,K + 2M −m. Thus with M = 4, Bi,4, i = 1, ...,K + 4 are the K + 4
cubic B-spline basis functions for the knot sequence τ . This recursion can be
continued and will generate the B-spline basis for any order spline.
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Functional bases

Which the base to choose?

Typically, for a given set functional data one of the above bases is
chosen based on the intuition on potential suitability for the data at
hand.

The number of elements of the basis to be used is often tested in
more or less ad hoc manner.
If we want to make our choice more data driven which of (infinitely
many) bases to choose given the data.
We want explore efficiently the functional data for a way to
represent them properly.

Splines with properly selected knots seem to be very suitable for the
problem.
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Splinets–structured orthogonalization

Outline

1 Motivation

2 Functional bases
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Splinets–structured orthogonalization

Recap

On common feature of different order of splines is that their are
built on knots.
Additional feature of the zero-order splines (Haar ‘splines’) is
orthogonality and ‘locality’ with respect to the addition of the knots.
For smoothed data one would wish for smooth basis.
The B-splines are local but not orthogonal.
They can be orthonormalized.
There is a need for good orthonormalization.
Strangely enough the problem did not receive much attention in
the past.
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Splinets–structured orthogonalization

Primer on B-splines - knots and boundaries

The set of knots is always ordered and represented as a vector ξ
of ordered values.
Typically, there are two alternative and essentially equivalent
approaches to discussing splines at the end points of their range:

1 No boundary conditions are imposed and ξ needs some initial
superfluous knots located at zero in order to handle efficiently
recurrent formulas.

2 The second approach does not introduce any superficial knots. It
rather imposes on a spline and all its derivatives of the order
smaller than the order of splines the value of zero at both the
endpoints of the domain.

The two approaches are in a certain sense equivalent, for
example, the first follows from the second by passing to the limit

ξ0, . . . , ξK−1 → ξK , ξK+n+1, . . . , ξ2K+n → ξ2K+n+1
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Splinets–structured orthogonalization

Primer on Splines – comparison of the two approaches

The two approaches to the endpoints for the first, second , and third order
splines in the case of B-splines: superfluous knots at endpoints (left),
imposed zeros as the initial conditions at the endpoints (right).
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Splinets–structured orthogonalization

Primer on Splines – recurrent definition of B-splines

The following recursion relation leads to the definition of the splines of
arbitrary order k < m. Suppose now that we have defined Bξ

k−1,l ,
l = 1, . . . ,m − k + 1. The B-splines of order k are defined, for
l = 1, . . . ,m − k , by

Bξ
k ,l(x) =

x − ξl

ξl+1 − ξl
Bξ

k−1,l(x) +
ξl+2 − x
ξl+2 − ξl+1

Bξ
k−1,l+1(x).
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Splinets–structured orthogonalization

Primer on Splines – recurrence in thousand words

The recursion in definition of the B-splines, the first order splines (top),
the second order spline (middle), and the third order spline (bottom).
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Splinets–structured orthogonalization

Orthogonalizing B - splines

B-splines seems to be nice because of their local supports.
However despite their local supports they are not trully local – try
add one knot and perform Gram-Schmidt orthogonalization:
‘everything’ changes.
Having explicit orthonormalization of B splines is of interest.
How to do it? There are many ways of orthogonalizing vectors.
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Krzysztof Podgórski, Lund University Data driven basis selection 22 / 42



Splinets–structured orthogonalization

Three orthogonalizations

Gramm-Schmidt - everyone knows it.
Löwdin Symmetric Orthogonalization - produces two-sided
symmetry (with respect to the center), it has smaller total support
for the elements than GS.
Structured orthogonalization – splinets.
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Splinets–structured orthogonalization

One- and two-sided orthogonalization

The third order O-splines. Top: one-sided left-to-right, ten knots; Bottom: two-sided, eleven knots;
in the left column equally spaced knots, in the right column irregularly spaced knots.

The graphs obtained using splinets package.
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Splinets–structured orthogonalization

Splinets – highlights

The term splinets is proposed to a unique ON family both preserving the locality
in the supports and at the same time inducing the orthonormality.
The total size of the support is at the order of log n while in the previous
approaches it is at the order n.
It uses the fact that for the B splines there are elements that have mutually
disjoint supports and thus naturally orthogonal. We create disjoint support
groups of subsequent splines. The number of element in a group is equal to the
order of the spline.
We perform two sided orthogonalization within the group. They are the initial
vectors in our orthogonalization. We call them zero level O-spline in the splinet.
Between subsequent zero order elements there are elements (their number
depending on the order of the considered splines) that have support that is
contained in the union of the support of these two zero order elements. We
orthogonalize them with respect to the zero order O-splines.
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Splinets–structured orthogonalization

The first order dyadic case
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Splinets–structured orthogonalization

The second order dyadic case
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Splinets–structured orthogonalization

splinets – dedicated R-package

Features:
General non-dyadic case covered.
Spline object

S(S) = {k , ξ, j ,m,s0,s1, . . . ,sk} ,
where [ξj , ξj+m] is the support of S and s0,s1, . . . ,sk are m + 1
dimensional vectors of values of the i-derivative of S at the knots given
in
(
ξj , . . . , ξj+m

)
, i = 0, . . . , k .

Algebra of spline objects.
Computational efficiency and stability of the representation that follows
from Taylor’s representation, i.e. if x ∈ [ξj+r , ξj+r+1], then

S(x) =
k∑

l=0

(x − ξj+r )l

l!
srl =

k∑
l=0

(x − ξj+r+1)l

l!
sr+1l .
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Data driven choice of the basis

Outline

1 Motivation

2 Functional bases

3 Splinets–structured orthogonalization
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Krzysztof Podgórski, Lund University Data driven basis selection 30 / 42



Data driven choice of the basis

Setting the problem

A method of adding knots based on the mean square error effectiveness of
approximating the functional data yi = yi(t), t ∈ [0, 1], i = 1, 2, . . . n.

The method is iterative and resembles regression tree building was inspired
Regression Trees methods.
For any functional data set Y = {yi ∈ L2, i = 1, . . . n}, the set of best least
square constant predictors is a set of functions

y (0)
i = 〈yi , 1〉1.

The constant functions over [0, 1] can be viewed as 0-order splines with no
internal knot points, and its one dimensional basis is given by the constant
function 1.
Thus we can set the initial set of knots to an empty set, i.e. K(0) = ∅, the initial
basis B(0) = {1}, and the projection to the space spanned by B(0) is given by
P(0)y = 〈y , 1〉1.
The average mean square error (AMSE) per function of approximations of yi ’s by
the optimal constant functions is given by

AMSE(Y,B(0)) =
1
n

n∑
i=1

‖ yi − P(0)yi‖2 =
1
n

n∑
i=1

‖ yi − 〈yi , 1〉1‖2.
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Data driven choice of the basis

Placing knots - do you remember regression trees?

At the first step, s = 1, find a knot ξ ∈ [0, 1] such that the optimal approximation
of y by a linear combination of the 0-order splines with the set of knots
K(1) = K(0) ∪ {ξ} yields the smallest AMSE, i.e. denote by B(1)(ξ) the
orthonormal base of piecewise constant functions over the intervals given by the
knots in K(1)(ξ). The new knot ξnew is chosen as

ξnew = argmin
ξ∈(0,1]

AMSE(Y,B(1)(ξ)).

Then the new, enlarged by one function, basis B(1) = B(1)(ξnew ) is uniquely
defined the new (with one knot added at ξnew ) set of knots K(1) = K(1)(ξnew ).

In the recurrent process, at the step s, we start with a sequence of knots K(s−1)

and search for a new knot ξnew by considering K(s)(ξ) = K(s−1) ∪ {ξ} and the
corresponding B(s)(ξ) the orthonormal base of piecewise constant functions.

ξnew = argmin
ξ∈(0,1]

AMSE(Y,B(s)(ξ)).
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Data driven choice of the basis

Features of the knot selection process

The 0-order splines constitute
O-basis.

This basis is local, i.e. adding a new
knot requires only a change in direct
vicinity of the knot.

At each new step most of the values
from the previous steps can be
utilized.

Computations are fast and simple.

The importance of particular knots
can be measured by reduction of
AMSE.

Different measures of the stop
criterion based on AMSE can be
used.

Modification of the method based on
random selection of the knots, or
bootstrapping from the functional
data, or from knots using their
importance can be utilized in the
spirit of machine learning methods.

The distributional properties of knots
can be used as feature used for
aligning the functions –
registering problem.

Smooth B-splines can be build on
the final optimal choice of the basis.

Smooth O-splines(?) can be
even better as the final
choice of the basis.
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Data driven choice of the basis

The final choice of the basis - splinet

Given a choice of the knots a smooth bases can be utilized to be
used in further functional data analysis.
The disadvantage of B-splines is that although local they are not
orthogonal except for the 0-order case.
Search for the orthogonal version of B-splines with possibly
maximal ‘locality’.
Splinets are ideal for the purpose.
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Small simulation study
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Small simulation study

Simple generator of non-linear functional data

functional data

yi = yi(x), x ∈ (0,1),

we consider the square roots of beta densities that are
proportional to xα−1(1− x)β−1, x ∈ (0,1), with positive α and β.
Consequently all our functional data belong to the space of square
integrable functions over (0,1), are proportional to
x (α−1)/2(1− x)(β−1)/2 and they have the L2 norm equal to one.
For a given functional data size n, pairs (αi , βi), i = 1, . . . ,n of
parameters are simulated independently from two dimensional
density proportional to

ατα−1βτβ−1 exp (−2 (ταα + τββ)) .
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Small simulation study

Four data sets
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Four samples of 10 functional data obtained from the square root beta
density simulator for α and β sampled from gamma distribution with the
shape τ equal from the right to the left to: τα = τβ = 1, τα = τβ = 2,
τα = τβ = 2.4, τα = τβ = 3.
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Small simulation study

Fourier vs. piecewise constant vs. smooth splines
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Small simulation study

Monte Carlo study

A Monte Carlo study of the dependence of the average mean
square error (AMSE) on the number basis elements.
Monte Carlo samples of size 10 were drawn from the four
specifications of the model based on beta densities.
For each of this sample the Fourier approximations with the
number of basis elements used increasing from 4 to 40 were
evaluated and their AMSE over all 10 elements of the data
evaluated.
This procedure has been repeated independently 20 times
resulting in 20 AMSE’s for each size of the Fourier base used.
The same was repeated for the piecewise constant data driven
basis,
Two cases: first, a new basis is selected anew for each MC
sample, second, a piecewise constant basis is selected for
the original sample and then used for every new MC sample.
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Box-plots for MC study
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The boxplots of AMSE’s obtained from 20 Monte Carlo simulations as a function the base size, which ranges from 4 to 40. For
each model 10 functional data were simulated and the orthonormal basis decomposition was run through these functional data
with increasing number of basis elements. Four cases are presented in the groups of five graphs. In each of the four cases on the
left (blue) and (red) corresponds to the piecewise constant data driven basis, in the left (blue) case a new basis is selected anew
for each MC sample, in the middle (red) case a piecewise constant basis is selected for an original sample and then used for
every new MC sample. The central picture (black and white) corresponds to the Fourier basis applied to the MC data.
Finally on the right, the smoothed orthonormal splines are used. In the graphs we can see clearly benefits using
data driven basis resulting in smaller variance and, except of few cases of small number of basis elements,
in generally smaller AMSE for the piecewise constant bases. Clearly, the smoothed splines outperform other methods for this
particular smooth data.
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Box-plots for MC study
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Small simulation study

Conclusion

The proposed data driven basis selection method searches through the
functional data to find optimal allocation of the knots to construct initial
orthonormal basis for subsequent FDA.

Orthogonality of the zero order splines is exploited to allocate knots.
Higher order orthogonal splinets can be used based on the obtained knots and
assuring computational efficiency.
Initial MC studies suggest that the approach more efficiently represents
functional data.
Actual studies on FDA models and methods, for example, functional principle
component analysis is needed.
There is a potential to improve the method through machine learning style data
mining through functional data (bootstrapping, boosting style).
Multidimensional in argument approaches are possible through tensor spaces of
splines.
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Krzysztof Podgórski, Lund University Data driven basis selection 41 / 42



Small simulation study

Conclusion

The proposed data driven basis selection method searches through the
functional data to find optimal allocation of the knots to construct initial
orthonormal basis for subsequent FDA.
Orthogonality of the zero order splines is exploited to allocate knots.
Higher order orthogonal splinets can be used based on the obtained knots and
assuring computational efficiency.

Initial MC studies suggest that the approach more efficiently represents
functional data.
Actual studies on FDA models and methods, for example, functional principle
component analysis is needed.
There is a potential to improve the method through machine learning style data
mining through functional data (bootstrapping, boosting style).
Multidimensional in argument approaches are possible through tensor spaces of
splines.
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Small simulation study

Thank you!
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