NOTES RELATED TO THE PROGAMS ON LAPLACE DISTRIBUTION AND STOCHASTIC PROCESSES BUILT UPON THEM

KRZYSZTOF PODGÓRSKI AND AND WHOEVER CONTRIBUTES ANYTHING TO THIS

1. PARAMETERIZATIONS OF UNIVARIATE LAPLACE

This section is based on [2]. The generalized Laplace laws are best described by their characteristic functions

$$\phi(u) = e^{i\delta u} \left(1 - i\mu u + \frac{\sigma^2 u^2}{2}\right)^{-\tau},\tag{1}$$

where $\tau > 0$, $\delta, \mu \in \mathbb{R}$ and $\sigma > 0$. The case of $\tau = 1$ is referred to as asymmetric Laplace and $\mu = 0$ corresponds to generalized symmetric Laplace distributions.

Remark 1. Frequently $\nu = 1/\tau$ is used as the shape parameter.

Another location parameter λ by centering the gamma variable in the following representation

$$Y = \sigma \sqrt{\Gamma} Z + \mu (\Gamma - \tau) + \lambda , \qquad (2)$$

where

$$\lambda = \delta + \tau \mu. \tag{3}$$

Another scale and skeweness parameters ψ and η are given by

$$\psi = \sqrt{\tau(\sigma^2 + \mu^2)}, \ \psi > 0,$$

$$\eta = \frac{\mu}{\sqrt{\sigma^2 + \mu^2}}, \ -1 \le \eta \le 1,$$
(4)

and we note the inverting relations

$$\sigma = \frac{\sqrt{\tau(1-\eta^2)}}{\psi},$$

$$\mu = \frac{\psi\eta}{\sqrt{\tau}},$$

$$\delta = \lambda - \psi\eta\sqrt{\tau}$$
(5)

Date: June 12, 2011.

K. PODGÓRSKI AND OTHERS

1.1. New tail parameter. The parameter $\tau > 0$ can be replaced by $\zeta > 0$:

$$\zeta = \frac{1}{1+\tau}, \ \zeta \in [0,1)$$
(6)

with the inversion formulas

$$\tau = \frac{1}{\zeta} - 1,\tag{7}$$

This leads to the following relation between the original parameterization $(\delta, \sigma, \mu, \tau) \in \mathbb{R} \times [0, \infty) \times \mathbb{R} \times (0, \infty)$ and the final one $(\lambda, \psi, \eta, \zeta) \in \mathbb{R} \times [0, \infty) \times [-1, 1] \times [0, 1)$:

$$\lambda = \delta + \mu \tau, \tag{8}$$

$$\psi = \sqrt{(\sigma^2 + \mu^2)\tau},\tag{9}$$

$$\eta = \frac{\mu}{\sqrt{\sigma^2 + \mu^2}},\tag{10}$$

$$\zeta = \frac{1}{1+\tau} \tag{11}$$

and the inverse relation

$$\delta = \lambda - \eta \psi \sqrt{\frac{1-\zeta}{\zeta}},\tag{12}$$

$$\sigma = \psi \sqrt{\frac{\zeta(1-\eta^2)}{1-\zeta}},\tag{13}$$

$$\mu = \eta \psi \sqrt{\frac{\zeta}{1-\zeta}},\tag{14}$$

$$\tau = \frac{1}{\zeta} - 1. \tag{15}$$

The following lines of Octave/Matlab code perform transition from one parameterization to another:

```
lambda=delta+mu*tau;
psi=sqrt((sigma^2+mu^2)*tau);
eta=mu/sqrt(mu^2+sigma^2);
zeta=1/(1+tau);
delta=lambda-eta*psi*sqrt((1-zeta)/zeta);
sigma=psi*sqrt(zeta*(1-eta^2)/(1-zeta));
mu=eta*psi*sqrt(zeta/(1-zeta));
tau=1/zeta-1;
```

1.2. Tail dependent skeweness parameter ξ . When τ tends to infinity (ζ tends to zero) the generalized Laplace distributions and tend to normal distributions irrespectively of η . This could lead to inconsistencies in the estimation of η . Consider for example $\eta = 1$. Given the case of small ζ , negative sample skewness will be observed nearly half of the time. Similar results would hold for samples from a normal distribution ($\zeta = 0$). However, since the value of $\eta > 0$ is prohibited in the case of negative skewness, it would force an estimated value of η to be negative. As a result, the estimation of η in the case $\eta = 1$ would show some inconsistencies. A parameter that allows for a smooth transition between the case $\eta = 1$ and $\eta = -1$, when ζ tends to zero, remedies the deficiencies. Thus, we propose a new asymmetry controlling parameter

$$\xi = \operatorname{sgn}(\eta)\eta^2\zeta, \ -\zeta \le \xi \le \zeta \tag{16}$$

with the inversion formulas

$$\xi = \frac{\text{sgn}(\mu)}{(1 + \sigma^2/\mu^2)(1 + \tau)}$$
(17)

and

$$\delta = \lambda - \psi \operatorname{sgn}(\xi) \frac{\sqrt{(1-\zeta)|\xi|}}{\zeta},\tag{18}$$

$$\sigma = \psi \sqrt{\frac{\zeta - |\xi|}{1 - \zeta}},\tag{19}$$

$$\mu = \psi \operatorname{sgn}(\xi) \sqrt{\frac{|\xi|}{1-\zeta}},\tag{20}$$

$$\tau = \frac{1}{\zeta} - 1. \tag{21}$$

The following lines of Octave/Matlab code perform transition from one parameterization to another:

```
lambda=delta+mu*tau;
psi=sqrt((sigma^2+mu^2)*tau);
xi=sign(mu)/((1+sigma^2/mu^2)*(1+tau));
zeta=1/(1+tau);
delta=lambda-psi*sign(xi)*sqrt((1-zeta)*abs(xi))/zeta;
sigma=psi*sqrt((zeta-abs(xi))/(1-zeta));
mu=psi*sign(xi)*sqrt(abs(xi)/(1-zeta));
```

tau=1/zeta-1;

2. MOVING AVERAGES

This section is based on [1].

2.1. Exponential kernels. If we take for m the Lebesgue measure in \mathbb{R}^d divided by $\nu > 0$, we obtain an extra numerical parameter (with the standard value $\nu = 1$) so we can write $\mathcal{LI}(\mu, \sigma, \nu; f)$. The case of $f(x) = \mathbf{1}_{[0,1]}(x)$ corresponds to the generalized Laplace distributions. We can also fully parameterize such distributions by taking a family of parameterized kernels. An interesting one consists of kernels $f(x) = K \exp(-\beta |x|^{\alpha})$, where |x| is the Euclidean norm in \mathbb{R}^d and K is a normalization constant. It leads to a fully parametrical model. The proportionality constant K is taken such that $\mathbb{V}(X) = (\mu^2 + \sigma^2)/\nu$ for all members of the family. For the one dimensional case we have

$$\int_{\mathbb{R}} \exp(-\beta |x|^{\alpha}) \, dx = 2\beta^{-1/\alpha} \Gamma\left(\frac{\alpha+1}{\alpha}\right)$$

and $f(x) = K(\alpha,\beta) \cdot e^{-\beta |x|^\alpha}$, where

$$K^{2}(\alpha,\beta) = \frac{2^{1/\alpha-1}\beta^{1/\alpha}}{\Gamma\left(\frac{\alpha+1}{\alpha}\right)}.$$

Thus by using an explicit form of the integral of f^k :

$$\int f^k = \left(\frac{2}{k}\right)^{1/\alpha} \left(\frac{(2\beta)^{1/\alpha}}{2\Gamma\left(\frac{\alpha+1}{\alpha}\right)}\right)^{k/2-1}$$

we obtain explicit formulas for the moments, skewness and kurtosis in terms of the gamma function. We also observe that for large α , the kernel is converging to $1/\sqrt{2}$ on [-1, 1], and thus the distribution of the integral becomes generalized Laplace with the parameters equal to $(0, \mu/\sqrt{2}, \sigma/\sqrt{2}, \nu/2)$. Whereas for small α , the kernel will approximate a constant function on the increasing support. Thus by virtue of the central limit theorem the integral converges in distribution to a normal distribution. For numerical purposed it is good to have a finite interval $[-r_k, r_k]$ over which $f^2(x)$ integrates to $1 - \epsilon$ for $\epsilon > 0$. We note that

$$\int_{[-r_k,r_k]^c} K^2(\alpha,\beta) e^{-2\beta|x|^{\alpha}} dx = 2K^2(\alpha,\beta) \int_{r_k}^{\infty} e^{-2\beta x^{\alpha}} dx$$
$$= 2\frac{K^2(\alpha,\beta)}{(2\beta)^{1/\alpha}} \int_{(2\beta)^{1/\alpha}r_k}^{\infty} e^{-u^{\alpha}} du$$

On the other hand

$$\int_{L}^{\infty} e^{-x^{\alpha}} dx = \int_{L^{\alpha}}^{\infty} e^{-u} u^{1/\alpha - 1} du$$
$$\leq e^{-L^{\alpha/2}} \int_{L^{\alpha}}^{\infty} e^{-u/2} u^{1/\alpha - 1} du$$
$$\leq e^{-L^{\alpha/2}} 2^{1/\alpha} \Gamma(1/\alpha).$$

Combining these two together we get

$$\int_{[-r_k, r_k]^c} f^2(x) \le 2 \frac{K^2(\alpha, \beta)}{\beta^{1/\alpha}} \Gamma(1/\alpha) e^{-\beta r_k^\alpha}$$
$$= 2^{1/\alpha} \alpha e^{-\beta r_k^\alpha}.$$

Thus the desired r_k can be defined as

$$r_k = \left(\log\left((2^{1/\alpha}\alpha/\epsilon)^{1/\beta}\right)\right)^{1/\alpha}$$

References

- S. Åberg and K. Podgórski. A class of non-gaussian second order random fields. *Extremes*, 2010. Online available before print publication, doi:10.1007/s10687-010-0119-1.
- [2] K. Podgórski and J. Wegener. Estimation for stochastic models driven by laplace motion. Comm. Statist. Theory Methods, 2010. (in press).

CENTRE FOR MATHEMATICAL SCIENCES, MATHEMATICAL STATISTICS, LUND UNIVERSITY, BOX 118, SE-22100 LUND, SWEDEN

E-mail address: krys@maths.lth.se