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Inspirational Anecdote

The French physicist Gabriel Lippman wrote the following in a letter to
Henri Poincare.

Tout le monde y croit cependent, car les experimenteurs s’imaginent que c’est un
theorem de mathematiques, et les mathematiciens que c’est un fait experimental.

Everybody believes in the exponential law of errors a:
the experimenters, because they think it can be proved by
mathematics;
the mathematicians, because they believe it has been established
by observation.

a
exponential law refers to what nowadays we call Gaussian or normal distribution.
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Introduction
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Introduction

Should one do anything?

Got data (y1, . . . , yn).
Want variance, take (y − ȳ)2 and quote the law of large numbers.
If one asks about the efficiency, call it quasi maximum likelihood
estimator quoting the MLE for gaussian distribution.
There is a good chance that some will be tricked into believing that
‘quasi’ refers to ‘maximum’ not to likelihood.
Thus you can pretend that your estimator is sanctified by the
efficiency of likelihood estimation methods.

It would not look so good if your method would be called ‘maximum
wrong likelihood’, as it should be.
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Introduction

Why should we care?

This little experiment tells why.
#Pareto
alpha=2.1; u=runif(1000); y=u^(-1/alpha)

#Mean and variance
mu=1/(1-1/alpha) ; s2=1/(1-2/alpha)-mu^2

#Maximum wrong likelihood estimators
bary=mean(y); vary=var(y)

#‘Not-wrong model’ based estimation
hatalpha=1/mean(log(y));
hatmu=1/(1-1/hatalpha); hats2=1/(1-2/hatalpha)-hatmu^2

> mu > bary > hatmu
1.90909 1.84928 1.91329

> sigma2 > vary > hatsigma2
17.3553 2.13148 18.4065
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Introduction

Why people do it?

Model are complex and the Gaussian paradigm is build into some
more complex often non-linear structure.
The model driven data non necessarily are Gaussian.
The Gaussianity of the underlying variables is not directly
verifiable.
The Gaussian likelihood method are efficient numerically.
The robustness for deviation from the distributional assumptions is
not sufficiently studied.
Non-Gaussianity of residuals is often swept under the carpet of
‘quasi likelihoodeness’.
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Introduction

Asymmetric Power ARCH model

Ding, Granger and Engle (1993) in "A long memory property of
stock market returns and a new model" addressed the leverage
effect through the model

yt = m + a1yt−1 + εt , εt = ρtet , et ∼ N(0,1)

ρδt = α0 + α1 ρ
δ
t−1 [(1− θ)δe+δ

t−1 + (1 + θ)δe−
δ

t−1 + β],

The standardized errors et are Gaussian
However, the non-standardized ones εt = ρtet are not due to
presence random volatility ρt .
If one just looks at regular residuals, then one should not be
bothered by their non-Gaussianity.
If one looks at standardized ones and they are not Gaussian, the
argument quasi-likelihood is often invoked.
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Introduction

Analyzing the performance of model

We fit the real data (S&P500) to the A-PARCH model and analyze
the residuals (left) and standardized residuals (right).

Both the residuals (ε̂t ) and the standardized residuals (êt ) are producing
tails heavier than normal distribution.

The model removed significant amount of mass from the tails.

The standardized residuals still show excess kurtosis.
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Introduction

Challenges

The standardized residuals still show excess kurtosis.

The problem may not necessarily lie in the model as the Gaussian
errors enter the model in non-linear fashion and deviation from
normality maybe due to the slow rate of convergence.
There is a need first to investigate if the Gaussian likelihood
method will work for such non-linear models with the Gaussian
error.
Alternatively, the model with non-Gaussian errors may produce
more efficient fit.
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Introduction

Parametric boostrap study

Simulate random data from the same model with Gaussian with the
parameters estimated using the real data.

Data Kurtosis

Returns Residuals with volatility Residuals
yt ρ̂t êt êt

S&P500 data 26.12 24.89 8.18

Simulation 7.33 7.23 2.96

Kurtoses for real data and estimated residuals are similar.

Kurtosis for residuals is higher than 3 – value for normal distribution.

Distribution of errors has tails heavier than normal.

The simulated data couldn’t generate the magnitude of tails
as seen in the data.
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Introduction

Non-Gaussian errors

Clearly, the model needs ‘non-Gaussian’ enhancement to account
for the observed deviations from the Gaussianity of standardized
residuals.
Even if one goes for quasi MLE, or (M-quasi-LE), the quality of
the estimation needs non-Gaussian benchmarking.
Preferably, the ‘correct’ MLE should be used but for this concrete
and analitically trackable distributions for errors are needed.
Inspired by:
Jensen, M. B. and Lunde, A. (2001).
The NIG-S&ARCH model: A fat-tailed, stochastic, and autoregressive conditional
heteroskedastic volatility model.
Econometrics Journal, 4:167–342.

we investigate a general structure encompassing a number of
possible non-Gaussian alternatives to the original AP-ARCH
model.
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Variance-mean mixture framework for equity modeling

Risk aversion

In the GARCH in mean model for equities yt with the volatility rt , the risk averse
investors are accounted for by h(·) in the following

yt = f (yt−1, . . . ) + h(rt ) + rtεt ,

where the form of f is not of interest for our discussion.
For our approach, the specific form of h is not critically important.
For the sake of simplicity we take h(r) = r . In the past research, various other
risk aversion functions h were considered such as, for example, h(r) = r 2, or
even h(r) = log r
The discussion would have to be adjusted for such a modification.
Without losing generality we can assume the equity equation

yt = c + drt + rtεt .

The benefits of using the GARCH in mean is well discussed in the literature and
the parameter d can be easily accounted for,
thus in the following we set d = 0.
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Variance-mean mixture framework for equity modeling

Mean-Variance Mixture of Gaussian

Non-Gaussianity can start at the level of the equity equation

To account for heavier tails and different asymmetries in the model we consider
variance-mean Gaussian mixtures for distribution of εt ’s. Then the generic model
can be written as follows

yt = c + rt

(
µΓt +

√
Γtet

)
, et ∼ N(0, 1).

Here the error εt = µΓt +
√

Γtet represents mixture of et by an independent
mixture variable Γt .

For this work the distribution of Γt , which determines both tails and asymmetries,
is of interest.
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Variance-mean mixture framework for equity modeling

Mean-Variance Mixture of Gaussian

The generalized hyperbolic (GH) distributions have been successfully applied to
various financial data and are fairly flexible while simple alternative to the
Gaussian distributions
They are characterized by their log-density being a hyperbola and considered as
a reasonable alternative for modeling heavier than normal tailed data and known
to simultanously capture the peaked and skewed behavior of returns data.
They can be conveniently represented as a normal variance-mean mixture

X = σ
√

ΓZ + µΓ,

where Z is a standard normal variable independent of Γ distributed according to
generalized inverse Gaussian (GIG).
The density of Γ :

fΓ(x) =
(a/b)τ/2

2Kτ (
√

ab)
xτ−1e− ax+b/x

2 ,

where a > 0, b ≥ 0, if τ > 0;
a > 0, b > 0, if τ = 0;
and a ≥ 0, b > 0, if τ < 0,
and Kτ is the modified Bessel function of the second kind.
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Modeling volatility with the leverage effect

General framework of the models

While the mean equity equation involves non-Gaussian
innovations, what is critical for the model and its capacity to
produce the leverage effect is how these innovations enter the
volatility equation.
This, however, can be done in a number of different ways.

One can use only positive and negative parts of the Gaussian
component et to desymmetrize volatility, the path taken for example
in Jensen and Lunde.
This desymmetrization can be achieved by using the entire
innovation εt = µγt +

√
γtet .

To be more general consider an autoregressive volatility model

r δt = α0 + r δt−1λt−1, , t ∈ Z,

in which λt is a function of some random components of the
innovations εt .
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Modeling volatility with the leverage effect

Mathematical formulation

Mathematically, if εt = u(χt ), where χt a random variable or vector while u is a given
deterministic transformation, then λt = v(χt ), for a certain other deterministic
transformation v .
Both u and v may depend on some parameters that maybe of interest.
We illustrate this set-up through three important specifications of λt in the volatility equation

χt = (γt , et ); u(γt , et ) = µγt +
√
γt et ; v(γt , et ) =

α
[
(1− θ)e+

t + (1 + θ)e−
t

]
+ β,

α
[
(1− θ)ε+

t + (1 + θ)ε−t

]
+ β,

χt = (γ+
t , γ

−
t ); u(γ+

t , γ
−
t ) = κγ+

t − γ
−
t /κ; v(γ+

t , γ
−
t ) = α

[
(1− θ)γ+

t + (1 + θ)γ−t

]
+ β.

In the first case only the Gaussian component in a shock affects volatility directly,
In the second we have the entire non-Gaussian shock involved. In this case, even when
θ = 0 one, in principle, may observe asymmetry in the response to the news attributed to
the asymmetry in εt . In fact, it is interesting to investigate this effect in such a case, since
avoiding positive and negative parts allows for analytically natural models.
In the third case, the innovation itself is presented as a decomposition into positive
and negative components γ+

t , γ−t that are,
for example, independently gamma distributed.
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Modeling volatility with the leverage effect

Benefits of the general formulations

A lot of mathematical and statistical properties are shared with the
Gaussian model that has been discussed in full detail in our
previous work.

The general treatment for the volatility equation allows to obtain
results independently of the specific form of χ, u and v .
Then pros and cons of different specifications of χ, u and v can be
analyzed on the derived general properties.
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Modeling volatility with the leverage effect

Generalized Laplace alternative

Taking errors as gammma variance-mean mixture

et =
√
γtZt + µγt ,

where γt are iid gamma distributed and Zt iid standard normal, we
obtain the model with generalized asymmetric Laplace distributions

yt = m + a yt−1 + ρt (µγt + σ
√
γtZt ) ,

The relation for volatility is the same as in the original model i.e.

ρδt = α0 + α1 ρ
δ
t−1 [(1− θ)δe+δ

t−1 + (1 + θ)δe−
δ

t−1 + β],
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Modeling volatility with the leverage effect

Fit of residuals

Sample distribution of residuals.
Left: qq-plot against the Gaussian distribution;
Middle: qq-plot against the fitted GAL;
Right: Histogram of the residuals against the fitted GAL density.
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Modeling volatility with the leverage effect

Alternative Model with GAL errors within the framework

An important property of Y ∼ GL(m, κ, σ, τ) is that, it can
be characterized as a difference of two gamma distributed
random variables

Y d
=m + ρtet

where the et follows GL distribution with the following repre-
sentation

et = κγ+
t −

1
κ
γ−t

The γ+ and γ− are the two independent and identically dis-
tributed gamma random variables with the same shape pa-
rameter τ
Volatility

ρδt = α0 + αρδt−1[(1− θ)δγ+
t−1

δ
+ (1 + θ)δγ−t−1

δ
+ β]
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Summary

Conclusions

Financial data exhibits certain features such as heavy tail,asymmetry,
leverage effect and volatility clustering.

In the studied CH volatility models the non-Gaussianity observed in the data
could not be explained by non-linearity of the models.
Non-Gaussian models are needed both for accuracy and for verification
Gaussian likelihood based methods.
It is also essential to build a model with relatively small and meaningful
parameters so that it can be interpretable across different economic
environments.
Our proposed models are capable of handling the distinct feature of financial
data and generalize several different approaches both with respect structure and
with respect distributional properties.
The difference of Γ’s allows us to model asymmetry in a natural way avoid using
absolute values of asymmetric random variables.
The heavy tails/long memory are naturally modeled by the shape
rather than the power that was shown not having the desired effect.
More studies are needed to verify the models in applications.
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Summary

Some final thoughts courtesy of George E. P. Box

Essentially, all models are wrong, but some are useful.
Remember that all models are wrong; the practical question is
how wrong do they have to be to not be useful.
A man in daily muddy contact with field experiments could not be
expected to have much faith in any direct assumption of
independently distributed normal errors.

George E. P. Box – a British mathematician and Professor of Statis-
tics at the University of Wisconsin

Thank you!
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