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Introduction

Highlights

A set of estimators of a parameter is combined into a weighted
average to produce the final estimator.

The weights are chosen to be proportional to the likelihood
evaluated at the estimators.
The method is presented for a set of estimators obtained by using
the maximum likelihood principle applied to each individual
observation.
The approach can be interpreted asBayesian with a data driven
prior.
The estimators are consistent, asymptotic normal, and
efficient.
The ‘posterior’ distribution automatically yields direct
assessment of the performance and accuracy of the estimator.
Work is jointly with – Mobarak Hossain and Tomasz J.
Kozubowski
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Introduction

Motivating example-generalized Laplace model

A multivariate generalized Laplace model

X =
√

GZ + Gµ + θ,

Z ∼ N(0,Σ), G is an independent gamma variable with the shape parameter τ .
Multimodal likelihood can be seen as shown by examining likelihood for a sample
of size ten for one dimension case with θ = 1, σ = 1, µ = −1, and τ = 0.2
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Introduction

Mulitvariate/multiparameter case

The problem becomes even more complicated for multiparameter or
multivariate cases:

Left: Location θ and shape τ , based a generalized Laplace distribution (with
τ = 0.75, θ = 0, and µ = 0);
Right: The location θ based on a sample of size ten of a bivariate Laplace
distribution, where τ = 0.55, µ = (2, 3), θ = (−1, 3), and Σ with the variances of
1 and 3 and the covariance set to 1.5.
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Introduction

Basic idea

Very often evaluating the MLE based on a single sample is not a
problem (this is the case in our examples).
Suppose that x = (x1, . . . , xn) is a sample from f (x |θ), where
θ ∈ Ω is an unknown (possible multivariate) parameter.
The MLE of θ based on the i th data value is the quantity θ̂i = v(xi).
These individual estimators are subsequently combined as a
weighted average to produce the final estimator

θ̂ =
n∑

i=1

wi θ̂i =

∑n
i=1 θ̂iL(θ̂i |x)∑n
j=1 L(θ̂j |x)

,

The weights are proportional to the likelihood.
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Introduction

Illustrative example

To illustrate the proposed methodology, consider a scale parameter θ of an
exponential distribution, for which the (full) likelihood function is

L(θ|x) = θne−θnx̄ .

The MLE is δ(x) = 1/x̄ .
The maximum value of the likelihood based on a single data point xi occurs at
θ̂i = 1/xi , so that the weighted estimator is

θ̂(x) =

∑n
k=1 x−n−1

k e−nx̄/xk∑n
k=1 x−n

k e−nx̄/xk
. (1)

Performance based on 10, 000 simulations:

NEW MLE
n θ θ̂(MSE) θ̂(MSE)

2 2 3.63 (45.52) 3.89 (47.41)
50 2 2.0486 (0.096) 2.0494 (0.091)

100 2 2.0195 (0.044) 2.0197 (0.042)
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Bayesian interpretation

Bayesian setup

Consider the Bayesian setup with some parametrized prior

Xi |θ ∼ f (·|θ), Θ|η ∼ π(·|η),

Typically, η is known.
In the empirical Bayes approach the unknown η is estimated
from the data, for example by maximizing the marginal

m(x|η) =

∫ n∏
i=1

f (xi |θ)π(θ|η)dθ,

This is a standard approach in the case of location parameter.
The resulting estimator η̂ is subsequently plugged-in into the
traditional Bayesian estimator of θ.
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Bayesian interpretation

Bayesian interpretation

For a sample X1, ...,Xn from f (x |θ), let the prior distribution π of Θ be a
discrete one, concentrated on values ai with equal probabilities.

The joint PDF of X = (X1, ...,Xn) and Θ is given by

h(x, θ) =

{
1
n

∏n
j=1 f (xj |θ) for xj ∈ R and θ = ai , i = 1, ...,n

0 otherwise.

The conditional PDF of Θ given X = x, that is the posterior PDF of Θ, is

π(θ|x) =

∏n
j=1 f (xj |θ)∑n

k=1
∏n

j=1 f (xj |ak )
=

L(θ|x)∑n
k=1 L(ak |x)

, θ = ai , i = 1,2, ...,n.

If ai = θ̂i , the posterior distribution corresponds to a random variable
taking values θ̂i ’s with probabilities given by the weights wi ’s

The mean of this posterior distribution coincides
with the proposed estimator.
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Bayesian interpretation

Non-parametric empirical Bayes

The previous estimation could be referred to parametric empirical Bayesian
since the data are used to choose (estimate) the parameter of the prior.
In contrast, in the newly proposed method, the empirical distribution of the
sample approximates the entire prior distribution Π(·|η), which does not really
have any finite dimensional parameter η – non-parametric nature (η is the
entire distribution)
By using empirical distribution of the data for the prior, one gets clues on
possible values of θ that might have generated the sample because having an
estimate of f (θ|θ0) as the prior, where θ0 is the true value for the data, should be
quite desirable since it assign relatively more probability to a neighborhood of θ0.

p. 493 in Lehmann, E.L. and Casella, G. (1998). Theory of Point Estimation, 2nd ed.,
Springer, New York.

“it is intuitively plausible that a close approximation to the asymptotic result will
tend to be achieved more quickly (i.e. for smaller n)”
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Asymptotic normality and efficiency

Remarks

We note that in our ‘empirical’ Bayes formulation there is no external input of any
kind with regard to the prior distribution.
It is the random sample itself that essentially determines it.
Moreover, our aim is to obtain a consistent estimator of a certain true generic
parameter that we call θ0.
We use the Bayesian setup primarily to establish asymptotic properties of this
construction in the frequentist meaning.

We distinguish two types of prior distributions for Θ:
one that does not depend on data, denoted by Π,
one that is data dependent (which is our case), and denoted by
Πn(·|x), where x represents the data.

If these priors are re-centered at the true value θ0, we write them as Π0 and
Π0

n(·|x), respectively.
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Asymptotic normality and efficiency

Frequentist theory of Bayesian estimators

The posterior distribution and its mean are expressed by means of the likelihood
ratio process,

Z 0
n (u) =

fn(x|θ0 + u)

fn(x|θ0)
,

where fn(x|θ0 + u) is the PDF of X given that the parameter is θ0 + u.
The posterior mean, under the classical non-empirical prior, expresses as

θ̂
(n)
b =

∫
(θ0 + u)Z 0

n (u) dΠ0(u)∫
Z 0

n (u) dΠ0(u)
= θ0 +

∫
uZ 0

n (u) dΠ0(u)∫
Z 0

n (u) dΠ0(u)
.

There is a considerable body of literature regarding the asymptotics of θ̂(n)
b under

variety of circumstances, and frequentist properties of such a ‘Bayesian’
estimator are well understood.
In particular, certain regularity conditions for the IID case guarantee the
asymptotic normality and efficiency of the estimator,

lim
n→∞

√
n(θ̂

(n)
b − θ0)

d
= N(0,Σ2

0),

where Σ2
0 = I(θ0)−1 and I(θ0) is the Fisher’s information matrix.
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Asymptotic normality and efficiency

Frequentist theory of empirical Bayesian estimators

These results for the classical Bayes estimator do not apply directly to the new
estimator since the empirical prior distribution is data dependent.

In the important case where Π0
n(u|x) converges to a certain distribution Π0(u),

we argue that θ̂(n)
eb inherits asymptotic properties of θ̂(n)

b such as asymptotic
efficiency

lim
n→∞

√
n(θ̂

(n)
eb − θ0)

d
= N(0,Σ2

0).

To the best of our knowledge, there are no readily available results on the
asymptotics of Bayesian estimators derived from data-dependent priors to be
utilized in our case.

The results obtained can be viewed as first steps towards a more
comprehensive asymptotic theory of Bayesian estimators arising in this set up.
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Asymptotic normality and efficiency

The main difficulty

Our main result and its proof depend heavily on the approach that is presented
in work of Ibragimov and Khashminsky.
In our approach, we utilize a Bayes estimator with the (empirical) prior
distribution Πn(θ|x) obtained on the basis of a random sample θ̂i = v(Xi ).
The convenience of the approach presented lies in deriving the asymptotical
behavior of the likelihood ration process Z̃ 0

n (s) = Z 0
n (s/

√
I(θ0)n).

The classical and empirical cases can be written as

θ̂
(n)
b =

∫
(θ0 + u)Z 0

n (u) dΠ0(u)∫
Z 0

n (u) dΠ0(u)
= θ0 +

∫
uZ 0

n (u) dΠ0(u)∫
Z 0

n (u) dΠ0(u)
,

θ̂
(n)
eb =

∫
(θ0 + u)Z 0

n (u) dΠ0
n(u|x)∫

Z 0
n (u) dΠ0

n(u|x)
= θ0 +

∫
uZ 0

n (u) dΠ0
n(u|x)∫

Z 0
n (u) dΠ0

n(u|x)
.

One has to control the rate at which the empirical prior converges to the
distribution of v(X ), where X is a random variable with the PDF f (x |θ0),
with θ0 being the true value.
Our goal was not to develop a comprehensive asymptotic theory of
empirical Bayes estimators, which would be quite a challenge.
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Krzysztof Podgórski, Lund University Weighted Likelihood Estimation 18 / 23



Further asymptotic results and extensions

Asymptotic posterior distribution

The asymptotic results can be utilized and interpreted to provide
statistical inference based on the posterior distribution.
The central result for this interpretation is the Bernstein-von Mises
theorem, stating that, under a suitable (and non-empirical) prior,
the posterior distribution is asymptotically equal to the
asymptotic normal distribution of the maximum likelihood
estimator.
We have not pursued this theoretical development although we
believe that the results holds by similar argument as in the case
the asymptotics of the posterior mean.
We illustrate this hypothesis through examples.
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Further asymptotic results and extensions

Two examples

We start with the Gaussian case, the distribution of MLE follows
from the classical theory.
We use the new estimator θ̂eb.
The weights are used to present smoothed density estimator,
representing the posterior distribution based on our empirical
Bayes approach.
By the asymptotic results, the two posterior distributions should
coincide.
We also consider the Cauchy case.
Here we do not have explicit form of the MLE distribution so the
graph is based on k = 1000 Monte Carlo simulated values.
We compare the sampling distribution of the estimator with the
posterior distribution based on a single run of the data.
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Further asymptotic results and extensions

Results

Comparison of the posterior distribution Pn(θ|x) based on the proposed approach (solid line)

with: (Top) the MLE distribution in the Gaussian case (dashed line); (Bottom) the Monte Carlo

simulated distribution of the estimator (dashed line). Sample sizes: 5 (left), 10 (middle), 50 (right).
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Further asymptotic results and extensions

Further possible developments

The asymptotics in the case when the empirical prior is based on the distribution
of an estimator that is already consistent, for example, the leave-one-out or
bootstrap distribution of an estimator.
For example, consider the ‘leave-one-out’ prior, concentrated on the n estimators
θ̂i calculated using the sample without the observation xi .
The multivariate location case can be treated exactly the same as the univariate
one.
For other than the location parameters one has to provide a convenient set of
estimates that when given equal weights lead to a data-driven empirical prior.
(The presented asymptotic result is valid in such a setup. )
Sets of estimates can be based on maximizing likelihood based on the individual
observations if the maximum is attained.
In other cases, one can adopt other methods based on subsampling data.
Investigating such empirical prior distributions for the parameters at
hand is a separate problem.
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Thank you!
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